Electronic Journal of Graph Theory and Applications

Enumeration for spanning trees and forests of join graphs based on the combinatorial decomposition

Sung Sik U
Faculty of Mathematics, Kim Il Sung University, DPRK
e-mail address : usungsik@yahoo.com

Abstract

This paper discusses the enumeration for rooted spanning trees and forests of the labelled join graphs $K_{m}+H_{n}$ and $K_{m}+K_{n, p}$, where H_{n} is a graph with n isolated vertices.

Keywords: spanning tree, spanning forest, join graph, enumeration
Mathematics Subject Classification : 05C05 05C30
DOI:10.5614/ejgta.2016.4.2.5

1. Introduction

In this paper we consider the enumeration problem of rooted spanning trees and forests of two labelled join graphs. In [2], the number of spanning forests of the labelled complete bipartite graph $K_{m, n}$ on m and n vertices has been enumerated by combinatorial method. In [1] and [3], it has been given the enumeration of spanning trees of the complete tripartite graph $K_{m, n, p}$ on m, n and p vertices and the complete multipartite graph, respectively. In [4], by using the multivariate Lagrange inverse, the number of spanning forests of the labelled complete multipartite graph was derived. And, in [5], it has been found the asymptotic number of labeled spanning forests of the complete bipartite graph $K_{m, n}$ as $m \rightarrow \infty$ when $m \leq n$ and $n=o\left(m^{6 / 5}\right)$.

Given two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with disjoint vertex sets, we let $G_{1}+G_{2}$ denote the join of G_{1} and G_{2}, that is, the graph $G_{1}+G_{2}=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E\left(V_{1}, V_{2}\right)\right)$ where $E\left(V_{1}, V_{2}\right)=\left\{(i, j) \mid i \in V_{1}, j \in V_{2}\right\},(i, j)$ denotes an edge between two vertices $i \in V_{1}, j \in V_{2}$.

[^0]Clearly, by the definition of a join graph, the complete bipartite graph $K_{m, n}$ is a join graph $H_{m}+H_{n}$ and the complete tripartite graph $K_{m, n, p}$ is a join graph $H_{m}+H_{n}+H_{p}$, where H_{m}, H_{n} and H_{p} are graphs with m isolated vertices, n isolated vertices and p isolated vertices, respectively.

The goal of this paper first is to give a combinatorial proof of the enumeration for the spanning trees and forests of a labelled join graph $K_{m}+H_{n}$, where K_{m} is the complete graph on m vertices and H_{n} is the graph with n isolated vertices. Second, this paper also gives a combinatorial proof of the enumeration for the spanning trees and all forests of another labelled join graph $K_{m}+K_{n, p}$, where $K_{n, p}$ is the complete bipartite graph on n vertices and p vertices.

2. Enumeration for spanning trees and forests of a join graph $\boldsymbol{K}_{\boldsymbol{m}}+\boldsymbol{H}_{\boldsymbol{n}}$

Let $V(G)$ denote the vertex set of graph G. Throughout this paper, we will consider only the labelled graphs. In this section, we consider a join graph $K_{m}+H_{n}$ where K_{m} is the complete graph on the vertex set $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$.
Lemma 2.1. The number $f(m, l)$ of the labelled spanning forests of K_{m} with l roots is

$$
\begin{equation*}
f(m, l)=\binom{m}{l} l m^{m-l-1} \tag{1}
\end{equation*}
$$

Proof Let $X=V\left(K_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ be the vertex set of K_{m} and $\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right\}$ be the given root set of K_{m}. There are $\binom{m}{l}$ ways to choose the l roots in $V\left(K_{m}\right)$. Also, let $X^{\prime}=X \backslash\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right\}$ be a subset of X, and $X^{\prime \prime}$ be another copy of X^{\prime} and let $x^{\prime \prime} \in X^{\prime \prime}$ denote copy of $x^{\prime} \in X^{\prime}$. Take the complete bipartite graph $K_{m, m-l}$ with the partition $\left(X, X^{\prime \prime}\right)$ of its vertex set. Consider the subgraph G of $K_{m, m-l}$ that contains only the directed edges of the form $\left(x^{\prime}, x^{\prime \prime}\right), x^{\prime} \in X^{\prime}, x^{\prime \prime} \in X^{\prime \prime}$. The number of the components of G is equal to $m-l$ and G is a forest of $K_{m-l, m-l}=\left(X^{\prime}, X^{\prime \prime}\right)$. Let $D\left(m,\left|\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right\}\right| ; m-l, 0\right)$ be the set of the labelled spanning forests of $K_{m, m-l}=\left(X, X^{\prime \prime}\right)$ with l roots $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}} \in X$ and $D^{*}\left(K_{m} ; x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right)$ be the set of the labelled spanning forests of K_{m} with l roots $x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}} \in X$. Now any spanning forest in $D\left(m,\left|\left\{x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right\}\right| ; m-l, 0\right)$ containing G gives rise to a spanning forest in $D^{*}\left(K_{m} ; x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{l}}\right)$ by contracting the edges $\left(x^{\prime}, x^{\prime \prime}\right), x^{\prime} \in X^{\prime}, x^{\prime \prime} \in X^{\prime \prime}$.

Conversely, any forest in $D^{*}\left(K_{m} ; x_{i_{1}}, x_{i_{2}}, \cdots \cdots, x_{i_{l}}\right)$ can be extended to a forest in $D\left(m,\left|\left\{x_{i_{1}}, x_{i_{2}}, \cdots \cdots, x_{i_{l}}\right\}\right| ; m-l, 0\right)$ containing G by inserting vertex $x^{\prime \prime} \in X^{\prime \prime}$ after $x^{\prime} \in X^{\prime}$. Therefore, from G, we will construct the rooted spanning forests of $K_{m, m-l}$ with l roots in X as follows.

For any fixed integer $t \in[0, m-l-1]$, add t edges consecutively to G as follows. At each step we add an edge of the form $\left(v, x^{\prime}\right)$ between $x^{\prime} \in X^{\prime}$ and a (unique)vertex $v \in X^{\prime \prime}$ of outdegree zero in any component not containing x^{\prime} in the graph already constructed. The number of components decreases by one each time such an edge is added.

Since $\left|X^{\prime}\right|=m-l$ and the number of components not containing x^{\prime} in the graph G is $m-l-1$, there are $(m-l)(m-l-1)$ choices for the first such edge. Similarly, there are $(m-l)(m-l-2)$ choices for the second edge, \cdots, and $(m-l)(m-l-t)$ choices for the t th edge.

The order in which the t edges are added to G is immaterial, so it follows that there are

$$
\frac{[(m-l)(m-l-1)][(m-l)(m-l-2)] \cdots[(m-l)(m-l-t)]}{t!}=\binom{m-l-1}{t}(m-l)^{t}
$$

ways.
Every graph we obtained will have $m-l-t$ (weakly) connected components each of which has a unique vertex in $X^{\prime \prime}$ of out-degree zero. Link edges from $m-l-t$ vertices of out-degree zero in these components to l given roots $x_{i_{1}}, x_{i_{2}}, \cdots \cdots, x_{i_{l}}$, there are l^{m-l-t} ways. Hence,

$$
f(m, l)=\binom{m}{l} \sum_{t=0}^{m-l-1}\binom{m-l-1}{t} l^{m-l-t}(m-l)^{t}=\binom{m}{l} l m^{m-l-1} .
$$

Let $D(m, l)$ be the set of the labelled spanning forests of K_{m} with l roots, i.e.,

$$
\begin{equation*}
f(m, l)=|D(m, l)| . \tag{2}
\end{equation*}
$$

Theorem 2.1. The number $g(m, n)$ of the labelled spanning trees of $K_{m}+H_{n}$ is

$$
\begin{equation*}
g(m, n)=m^{n-1}(m+n)^{m-1} . \tag{3}
\end{equation*}
$$

Proof Let $V\left(K_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}, V\left(H_{n}\right)=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ be the vertex sets of K_{m}, H_{n}, respectively, and $y_{1} \in V\left(H_{n}\right)$ be the given root of $K_{m}+H_{n}$. Let $D\left(m, 0 ; n,\left|\left\{y_{1}\right\}\right|\right)$ be the set of the labelled spanning trees of $K_{m}+H_{n}$ with root y_{1} and $T(m, n)$ be the set of the labelled spanning trees of $K_{m}+H_{n}$. Clearly, $|T(m, n)|=\left|D\left(m, 0 ; n,\left|\left\{y_{1}\right\}\right|\right)\right|$.

From every graph $F \in D(m, l)$, we will construct the rooted spanning trees of $K_{m}+H_{n}$ as follows. Link an edge (y, x) between every $y \in V\left(H_{n}\right) \backslash\left\{y_{1}\right\}$ and some $x \in V(F)$. There are m^{n-1} ways. Notice that the obtained graph G has l (weakly) connected components each of which has a unique vertex in $V\left(K_{m}\right)$ of out-degree zero.

Now, for any fixed integer t, let G^{\prime} denote a graph obtained by adding t edges consecutively to G as follows. At each step we add an edge of the form (x, y) where y is any vertex of $y \in$ $V\left(H_{n}\right) \backslash\left\{y_{1}\right\}$ and $x \in V\left(K_{m}\right)$ is a vertex of out-degree zero in any component not containing y in the graph already constructed. The number of components decreases by one each time such an edge is added.

Since $\left|V\left(H_{n}\right) \backslash\left\{y_{1}\right\}\right|=n-1$ and the number of components not containing y in the graph G already constructed is $l-1$, there are $(n-1)(l-1)$ choices for the first such edge. Similarly, there are $(n-1)(l-2)$ choices for the second edge, \cdots, and $(n-1)(l-t)$ choices for the t th edge, where, $0 \leq t \leq l-1$, because the number of components in the graph G is l. The graph G^{\prime} thus constructed has $l-t$ components each of which has a unique vertex in $V\left(K_{m}\right)$ of out-degree zero and the remaining vertices all have out-degree one; if we add edges from these vertices of out-degree zero to y_{1}, we obtain a tree T^{\prime} in $D\left(m, 0 ; n,\left|\left\{y_{1}\right\}\right|\right)$ that contains G and in which the in-degree of y_{1} equals to $l-t$. The order in which the t edges are added to G to form G^{\prime} is immaterial, so it follows that there are

$$
\frac{[(n-1)(l-1)][(n-1)(l-2)] \cdots[(n-1)(l-t)]}{t!}=\binom{l-1}{t}(n-1)^{t}
$$

rooted spanning trees T^{\prime} for fixed integer t. This implies that there are

$$
\sum_{t=0}^{l-1}\binom{l-1}{t}(n-1)^{t}=n^{l-1}
$$

spanning trees T in $D\left(m, 0 ; n,\left|\left\{y_{1}\right\}\right|\right)$ that contain G. Hence, by (2) and Lemma 2.1, we have

$$
\begin{aligned}
g(m, n) & =\left|D\left(m, 0 ; n,\left|\left\{y_{1}\right\}\right|\right)\right|=\sum_{l=1}^{m}|D(m, l)| n^{l-1} m^{n-1} \\
& =\sum_{l=1}^{m}\binom{m}{l} l m^{m-l-1} n^{l-1} m^{n-1}=m^{n-1}(m+n)^{m-1}
\end{aligned}
$$

as desired.
Theorem 2.2. The number $g(m, l ; n, k)$ of the labelled spanning forests of $K_{m}+H_{n}$ with l roots in K_{m} and k roots in H_{n} is

$$
\begin{equation*}
g(m, l ; n, k)=\binom{m}{l}\binom{n}{k} m^{n-k-1}(m+n)^{m-l-1}(l m+m k+l n-k l) . \tag{4}
\end{equation*}
$$

Proof Let $V\left(H_{n}\right)=\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ be the vertex set of H_{n} and $\left\{y_{i_{1}}, y_{i_{2}}, \cdots, y_{i_{k}}\right\}$ be the given root set of H_{n}. There are $\binom{n}{k}$ ways to choose the k roots in $V\left(H_{n}\right)$. Let $V\left(K_{m}\right)=\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ be the vertex set of K_{m} and $Y^{\prime}=V\left(H_{n}\right) \backslash\left\{y_{i_{1}}, y_{i_{2}}, \cdots, y_{i_{k}}\right\}$ be a subset of $V\left(H_{n}\right)$.

From every graph $F \in D(m, s)(s \geq l)$, we will construct the rooted spanning forests of $K_{m}+H_{n}$ with l roots in K_{m} and k roots in H_{n} as follows. Link an edge (y, v) between every $y \in Y^{\prime}$ and some $v \in V(F)$. There are m^{n-k} ways. Notice that the obtained graph G has s (weakly) connected components each of which has a unique vertex in $V\left(K_{m}\right)$ of out-degree zero and the remaining vertices all have out-degree one.

As in the proof of former theorem, link an edge (v, y) between $y \in Y^{\prime}$ and a vertex $v \in V\left(K_{m}\right)$ of out-degree zero in any component not containing y in the graph already constructed, we repeat this procedure i times, where, $0 \leq i \leq s-l$, because the required forests have l roots in $V\left(K_{m}\right)$.

There are

$$
\begin{equation*}
\frac{[(n-k)(s-1)][(n-k)(s-2)] \cdots[(n-k)(s-i)]}{i!}=\binom{s-1}{i}(n-k)^{i} \tag{5}
\end{equation*}
$$

ways.
Every graph G^{\prime} we obtained will have $s-i$ components each of which has a unique vertex in $V\left(K_{m}\right)$ of out-degree zero. Now, choose the $s-i-l$ vertices of out-degree zero in these $s-i$ components and link edges from these $s-i-l$ vertices to k roots $y_{i_{1}}, y_{i_{2}}, \cdots, y_{i_{k}}$. There are

$$
\begin{equation*}
\binom{s-i}{s-i-l} k^{s-i-l}=\binom{s-i}{l} k^{s-i-l} \tag{6}
\end{equation*}
$$

ways.
Therefore, by (5) and (6), the number of the rooted spanning forests of $K_{m}+H_{n}$ which are obtained from F is equal to

$$
\begin{equation*}
\sum_{i=0}^{s-l}\binom{s-1}{i}\binom{s-i}{l}(n-k)^{i} k^{s-i-l}=\binom{s}{l} n^{s-l}-\binom{s}{l} \frac{s-l}{s} n^{s-l-1}(n-k) . \tag{7}
\end{equation*}
$$

Hence, by (2), (7) and Lemma 2.1, the number $g(m, l ; n, k)$ of the labelled spanning forests of $K_{m}+H_{n}$ with l roots in K_{m} and k roots in H_{n} is as follows.

$$
\begin{aligned}
g(m, l ; n, k) & =\binom{n}{k} \sum_{s=l}^{m}|D(m, s)| m^{n-k} \sum_{i=0}^{s-l}\binom{s-1}{i}\binom{s-i}{l}(n-k)^{i} k^{s-i-l} \\
& =\binom{n}{k} \sum_{s=l}^{m}\binom{m}{s} s m^{m-s-1} m^{n-k}\left[\binom{s}{l} n^{s-l}-\binom{s}{l} \frac{s-l}{s} n^{s-l-1}(n-k)\right] \\
& =\binom{m}{l}\binom{n}{k} m^{n-k-1}(m+n)^{m-l-1}(l m+m k+l n-l k) .
\end{aligned}
$$

We get the required result.
Corollary 2.1. The number $S(m, n)$ of all spanning forests of the join graph $K_{m}+H_{n}$ is equal to

$$
\begin{equation*}
S(m, n)=(m+n+1)^{m}(m+1)^{n-1} . \tag{8}
\end{equation*}
$$

Proof By Theorem 2.2,

$$
\begin{aligned}
S(m, n) & =\sum_{l=0}^{m} \sum_{k=0}^{n} g(m, l ; n, k) \\
& =\sum_{l=0}^{m} \sum_{k=0}^{n}\binom{m}{l}\binom{n}{k} m^{n-k-1}(m+n)^{m-l-1}(l m+m k+l n-k l) \\
& =(m+n+1)^{m}(m+1)^{n-1}
\end{aligned}
$$

Thus, this corollary is true.

3. Enumeration for spanning trees and forests of a join graph $\boldsymbol{K}_{\boldsymbol{m}}+\boldsymbol{K}_{\boldsymbol{n}, \boldsymbol{p}}$

In this section, we consider another join graph $K_{m}+K_{n, p}$ where K_{m} is the complete graph and $K_{n, p}$ is the complete bipartite graph. We will show how to count the number of the spanning trees of a join graph $K_{m}+K_{n, p}$. Clearly, $K_{m}+K_{n, p}=\left(K_{m}+H_{n}\right)+H_{p}$. Let $D(m, l ; n, k)$ be the set of the labelled spanning forests of $K_{m}+H_{n}$ with l roots in K_{m} and k roots in H_{n}, i.e.,

$$
\begin{equation*}
g(m, l ; n, k)=|D(m, l ; n, k)| . \tag{9}
\end{equation*}
$$

Theorem 3.1. The number $g(m, n, p)$ of the spanning trees of $K_{m}+K_{n, p}$ is equal to

$$
\begin{equation*}
g(m, n, p)=(m+n)^{p-1}(m+p)^{n-1}(m+n+p)^{m} . \tag{10}
\end{equation*}
$$

Proof Let $V\left(K_{m}+H_{n}\right)=\left\{x_{1}, x_{2}, \cdots, x_{m} ; y_{1}, y_{2}, \ldots, y_{n}\right\}$ be the vertex set of $K_{m}+H_{n}$ and $V\left(H_{p}\right)=\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ be the vertex set of H_{p}. Let $z_{1} \in V\left(H_{p}\right)$ be the given roots of $K_{m}+K_{n, p}$ and $Z^{\prime}=V\left(H_{p}\right) \backslash\left\{z_{1}\right\}, D\left(m, 0 ; n, 0 ; p,\left|\left\{z_{1}\right\}\right|\right)$ be the set of the labelled spanning trees of $K_{m}+$ $K_{n, p}$ with root z_{1}. Clearly,

$$
g(m, n, p)=\left|D\left(m, 0 ; n, 0 ; p,\left|\left\{z_{1}\right\}\right|\right)\right| .
$$

We shall obtain the spanning trees in $D\left(m, 0 ; n, 0 ; p,\left|\left\{z_{1}\right\}\right|\right)$ from every graph $F \in D(m, l ; n, k)$. As in the proof of former theorem, link an edge (z, v) between every $z \in Z^{\prime}$ and some $v \in V(F)$. There are $(m+n)^{p-1}$ ways. Notice that the obtained graph G has $l+k$ (weakly) connected components each of which has a unique vertex in $V\left(K_{m}\right) \cup V\left(H_{n}\right)$ of out-degree zero and the remaining vertices all have out-degree one.

For any fixed integer t such that $0 \leq t \leq l+k-1$, link an edge (v, z) between $z \in Z^{\prime}$ and a vertex $v \in V\left(K_{m}\right) \cup V\left(H_{n}\right)$ of out-degree zero in any component not containing z in the graph already constructed, we repeat this procedure t times.

There are

$$
\frac{[(p-1)(l+k-1)][(p-1)(l+k-2)] \cdots[(p-1)(l+k-t)]}{t!}=\binom{l+k-1}{t}(p-1)^{t}
$$

ways. Therefore, the number of the spanning trees which are obtained from F is equal to

$$
\sum_{t=0}^{l+k-1}\binom{l+k-1}{t}(p-1)^{t}=p^{l+k-1}
$$

Hence, by (9) and Theorem 2.2,

$$
\begin{aligned}
g(m, n, p) & =\left|D\left(m, 0 ; n, 0 ; p,\left|\left\{z_{1}\right\}\right|\right)\right| \\
& =\sum_{l=0}^{m} \sum_{k=0}^{n}|D(m, l ; n, k)| p^{l+k-1}(m+n)^{p-1} \\
& =\sum_{l=0}^{m} \sum_{k=0}^{n}\binom{m}{l}\binom{n}{k} m^{n-k-1}(m+n)^{m-l-1}(l m+k m+l n-l k) p^{k+l-1}(m+n)^{p-1} \\
& =(m+n)^{p-1}(m+p)^{n-1}(m+n+p)^{m} .
\end{aligned}
$$

Therefore, we get the required result.
Theorem 3.2. The number $S(m, n, p)$ of all spanning forests of the join graph $K_{m}+K_{n, p}$ is equal to

$$
\begin{equation*}
S(m, n, p)=(m+n+p+1)^{m+1}(m+n+1)^{p-1}(m+p+1)^{n-1} . \tag{11}
\end{equation*}
$$

Proof Let $B(p, r)$ denote the set of spanning forests of the join graph $K_{m}+K_{n, p}=\left(K_{m}+H_{n}\right)+H_{p}$ which r roots are in $V\left(H_{p}\right)$ and remaining roots are in $V\left(K_{m}\right)$ or $V\left(H_{n}\right)$.

From every graph $F \in D(m, l ; n, k)$, we will construct the rooted spanning forests of $\left(K_{m}+\right.$ $\left.H_{n}\right)+H_{p}$ with r roots in $V\left(H_{p}\right)$ as follows. Let $z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{r}} \in V\left(H_{p}\right)$ be root vertices. The number of ways to select r roots in $V\left(H_{p}\right)$ is equal to $\binom{p}{r}$. Let $Z^{\prime}=V\left(H_{p}\right) \backslash\left\{z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{r}}\right\}$. Link an edge (z, v) between every $v \in Z^{\prime}$ and some $v \in V(F)$. There are $(m+n)^{p-r}$ ways. Notice that the obtained graph G has $l+k$ (weakly) connected components each of which has a unique vertex in $V\left(K_{m}\right) \cup V\left(H_{n}\right)$ of out-degree zero and the remaining vertices all have out-degree one.

As in the proof of former theorem, for any fixed integer t such that $0 \leq t \leq l+k-1$, link an edge (v, z) between $z \in Z^{\prime}$ and a vertex $v \in V\left(K_{m}\right) \cup V\left(H_{n}\right)$ of out-degree zero in any component
not containing z in the graph already constructed, we repeat this procedure t times. There are

$$
\frac{[(p-r)(l+k-1)][(p-r)(l+k-2)] \cdots[(p-r)(l+k-t)]}{t!}=\binom{l+k-1}{t}(p-r)^{t}
$$

ways.
The graph G^{\prime} thus constructed has $l+k-t$ components each of which has a unique vertex in $V\left(K_{m}\right) \cup V\left(H_{n}\right)$ of out-degree zero and the remaining vertices all have out-degree one; if we add edges from some vertices of these vertices of out-degree zero to $z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{r}} \in Z$, we obtain a forest in $B(p, r)$ that contains G. There are $(r+1)^{l+k-t}$ ways. Therefore, this implies that there are

$$
\sum_{t=0}^{l+k-1}\binom{l+k-1}{t}(p-r)^{t}(r+1)^{l+k-t}=(r+1)(p+1)^{l+k-1}
$$

forests in $B(p, r)$ that contain G. Hence, by (9) and Theorem 2.2,

$$
\begin{aligned}
S(m, n, p)= & \sum_{l=0}^{m} \sum_{k=0}^{n}|D(m, l ; n, k)| \sum_{r=0}^{p}\binom{p}{r}(m+n)^{p-r}(r+1)(p+1)^{l+k-1} \\
= & \sum_{l=0}^{m} \sum_{k=0}^{n}\binom{m}{l}\binom{n}{k} m^{n-k-1}(m+n)^{m-l-1}(l m+m k+l n-l k) \\
& \sum_{r=0}^{p}\binom{p}{r}(m+n)^{p-r}(r+1)(p+1)^{l+k-1} \\
= & (m+n+p+1)^{m+1}(m+n+1)^{p-1}(m+p+1)^{n-1} .
\end{aligned}
$$

Thus, this theorem is true.

Acknowledgement

The author thanks the referees for very careful readings and many constructive commments that greatly improve the presentation of this paper.

References

[1] O. Egecioglu and J. B. Remmel, Bijections for Cayley trees, spanning trees, and their qanalogues, Journal of Combinatorial Theory, Series A 42 (1986), 15-30.
[2] Y. Jin and C. Liu, Enumeration for spanning forests of complete bipartite graphs, Ars Combinatoria 70 (2004), 135-138.
[3] R. P. Lewis, The number of spanning trees of a complete multipartite graph, Discrete Mathematics 197/198 (1999), 537-541.
[4] L. A. Szekely, Counting rooted spanning forests in complete multipartite graphs, Ars Combinatoria 73 (2004), 97-100.
[5] D. Stark, The asymptotic number of spanning forests of complete bipartite labelled graphs, Discrete Mathematics 313 (2013), 1256-1261.

[^0]: Received: 21 April 2014, Revised: 11 July 2015, Accepted: 2 August 2016.

