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Abstract
This paper discusses the enumeration for rooted spanning trees and forests of the labelled join
graphs Km +Hn and Km +Kn,p, where Hn is a graph with n isolated vertices.
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1. Introduction

In this paper we consider the enumeration problem of rooted spanning trees and forests of
two labelled join graphs. In [2], the number of spanning forests of the labelled complete bipartite
graph Km,n on m and n vertices has been enumerated by combinatorial method. In [1] and [3], it
has been given the enumeration of spanning trees of the complete tripartite graph Km,n,p on m,n
and p vertices and the complete multipartite graph, respectively. In [4], by using the multivariate
Lagrange inverse, the number of spanning forests of the labelled complete multipartite graph was
derived. And, in [5], it has been found the asymptotic number of labeled spanning forests of the
complete bipartite graph Km,n as m→∞ when m ≤ n and n = o(m6/5).

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets, we let G1 + G2

denote the join of G1 and G2, that is, the graph G1 +G2 = (V1 ∪ V2, E1 ∪ E2 ∪ E(V1, V2)) where
E(V1, V2) = {(i, j)|i ∈ V1, j ∈ V2}, (i, j) denotes an edge between two vertices i ∈ V1, j ∈ V2.
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Clearly, by the definition of a join graph, the complete bipartite graph Km,n is a join graph
Hm +Hn and the complete tripartite graph Km,n,p is a join graph Hm +Hn +Hp, where Hm, Hn

and Hp are graphs with m isolated vertices, n isolated vertices and p isolated vertices, respectively.
The goal of this paper first is to give a combinatorial proof of the enumeration for the spanning

trees and forests of a labelled join graph Km +Hn, where Km is the complete graph on m vertices
and Hn is the graph with n isolated vertices. Second, this paper also gives a combinatorial proof
of the enumeration for the spanning trees and all forests of another labelled join graph Km +Kn,p,
where Kn,p is the complete bipartite graph on n vertices and p vertices.

2. Enumeration for spanning trees and forests of a join graph Km + Hn

Let V (G) denote the vertex set of graph G. Throughout this paper, we will consider only the
labelled graphs. In this section, we consider a join graph Km + Hn where Km is the complete
graph on the vertex set {x1, x2, · · · , xm}.
Lemma 2.1. The number f(m, l) of the labelled spanning forests of Km with l roots is

f(m, l) =

(
m

l

)
lmm−l−1. (1)

Proof Let X = V (Km) = {x1, x2, · · · , xm} be the vertex set of Km and {xi1 , xi2 , · · · , xil}
be the given root set of Km. There are

(
m
l

)
ways to choose the l roots in V (Km). Also, let

X ′ = X\{xi1 , xi2 , · · · , xil} be a subset of X , and X ′′ be another copy of X ′ and let x′′ ∈ X ′′

denote copy of x′ ∈ X ′. Take the complete bipartite graph Km,m−l with the partition (X,X ′′) of
its vertex set. Consider the subgraph G of Km,m−l that contains only the directed edges of the form
(x′, x′′), x′ ∈ X ′, x′′ ∈ X ′′. The number of the components of G is equal to m− l and G is a forest
of Km−l,m−l = (X ′, X ′′). Let D(m, |{xi1 , xi2 , · · · , xil}|;m− l, 0) be the set of the labelled span-
ning forests of Km,m−l = (X,X ′′) with l roots xi1 , xi2 , · · · , xil ∈ X and D∗(Km;xi1 , xi2 , · · · , xil)
be the set of the labelled spanning forests of Km with l roots xi1 , xi2 , · · · , xil ∈ X . Now any span-
ning forest in D(m, |{xi1 , xi2 , · · · , xil}|;m − l, 0) containing G gives rise to a spanning forest in
D∗(Km;xi1 , xi2 , · · · , xil) by contracting the edges (x′, x′′), x′ ∈ X ′, x′′ ∈ X ′′.

Conversely, any forest in D∗(Km;xi1 , xi2 , · · · · · · , xil) can be extended to a forest in
D(m, |{xi1 , xi2 , · · · · · · , xil}|;m − l, 0) containing G by inserting vertex x′′ ∈ X ′′ after x′ ∈ X ′.
Therefore, from G, we will construct the rooted spanning forests of Km,m−l with l roots in X as
follows.

For any fixed integer t ∈ [0,m − l − 1], add t edges consecutively to G as follows. At each
step we add an edge of the form (v, x′) between x′ ∈ X ′ and a (unique)vertex v ∈ X ′′ of out-
degree zero in any component not containing x′ in the graph already constructed. The number of
components decreases by one each time such an edge is added.

Since |X ′| = m−l and the number of components not containing x′ in the graph G is m−l−1,
there are (m− l)(m− l−1) choices for the first such edge. Similarly, there are (m− l)(m− l−2)
choices for the second edge, · · · , and (m− l)(m− l − t) choices for the tth edge.

The order in which the t edges are added to G is immaterial, so it follows that there are

[(m− l)(m− l − 1)][(m− l)(m− l − 2)] · · · [(m− l)(m− l − t)]

t!
=

(
m− l − 1

t

)
(m− l)t
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ways.
Every graph we obtained will have m − l − t (weakly) connected components each of which

has a unique vertex in X ′′ of out-degree zero. Link edges from m − l − t vertices of out-degree
zero in these components to l given roots xi1 , xi2 , · · · · · · , xil , there are lm−l−t ways. Hence,

f(m, l) =

(
m

l

)m−l−1∑
t=0

(
m− l − 1

t

)
lm−l−t(m− l)t =

(
m

l

)
lmm−l−1. 2

Let D(m, l) be the set of the labelled spanning forests of Km with l roots, i.e.,

f(m, l) = |D(m, l)|. (2)

Theorem 2.1. The number g(m,n) of the labelled spanning trees of Km +Hn is

g(m,n) = mn−1(m+ n)m−1. (3)

Proof Let V (Km) = {x1, x2, · · · , xm}, V (Hn) = {y1, y2, · · · , yn} be the vertex sets of Km, Hn,
respectively, and y1 ∈ V (Hn) be the given root of Km +Hn. Let D(m, 0;n, |{y1}|) be the set of
the labelled spanning trees of Km+Hn with root y1 and T (m,n) be the set of the labelled spanning
trees of Km +Hn. Clearly, |T (m,n)| = |D(m, 0;n, |{y1}|)|.

From every graph F ∈ D(m, l), we will construct the rooted spanning trees of Km + Hn as
follows. Link an edge (y, x) between every y ∈ V (Hn)\{y1} and some x ∈ V (F ). There are
mn−1 ways. Notice that the obtained graph G has l (weakly) connected components each of which
has a unique vertex in V (Km) of out-degree zero.

Now, for any fixed integer t, let G′ denote a graph obtained by adding t edges consecutively
to G as follows. At each step we add an edge of the form (x, y) where y is any vertex of y ∈
V (Hn)\{y1} and x ∈ V (Km) is a vertex of out-degree zero in any component not containing y
in the graph already constructed. The number of components decreases by one each time such an
edge is added.

Since |V (Hn)\{y1}| = n − 1 and the number of components not containing y in the graph G
already constructed is l − 1, there are (n − 1)(l − 1) choices for the first such edge. Similarly,
there are (n − 1)(l − 2) choices for the second edge, · · · , and (n − 1)(l − t) choices for the tth
edge, where, 0 ≤ t ≤ l − 1, because the number of components in the graph G is l. The graph G′

thus constructed has l − t components each of which has a unique vertex in V (Km) of out-degree
zero and the remaining vertices all have out-degree one; if we add edges from these vertices of
out-degree zero to y1, we obtain a tree T ′ in D(m, 0;n, |{y1}|) that contains G and in which the
in-degree of y1 equals to l − t . The order in which the t edges are added to G to form G′ is
immaterial, so it follows that there are

[(n− 1)(l − 1)][(n− 1)(l − 2)] · · · [(n− 1)(l − t)]

t!
=

(
l − 1

t

)
(n− 1)t

rooted spanning trees T ′ for fixed integer t. This implies that there are

l−1∑
t=0

(
l − 1

t

)
(n− 1)t = nl−1
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spanning trees T in D(m, 0;n, |{y1}|) that contain G. Hence, by (2) and Lemma 2.1, we have

g(m,n) = |D(m, 0;n, |{y1}|)| =
m∑
l=1

|D(m, l)|nl−1mn−1

=
m∑
l=1

(
m

l

)
lmm−l−1nl−1mn−1 = mn−1(m+ n)m−1

as desired. 2

Theorem 2.2. The number g(m, l;n, k) of the labelled spanning forests of Km +Hn with l roots
in Km and k roots in Hn is

g(m, l;n, k) =

(
m

l

)(
n

k

)
mn−k−1(m+ n)m−l−1(lm+mk + ln− kl). (4)

Proof Let V (Hn) = {y1, y2, · · · , yn} be the vertex set of Hn and {yi1 , yi2 , · · · , yik} be the given
root set of Hn. There are

(
n
k

)
ways to choose the k roots in V (Hn). Let V (Km) = {x1, x2, · · · , xm}

be the vertex set of Km and Y ′ = V (Hn)\{yi1 , yi2 , · · · , yik} be a subset of V (Hn).
From every graph F ∈ D(m, s)(s ≥ l), we will construct the rooted spanning forests of

Km + Hn with l roots in Km and k roots in Hn as follows. Link an edge (y, v) between every
y ∈ Y ′ and some v ∈ V (F ). There are mn−k ways. Notice that the obtained graph G has s
(weakly) connected components each of which has a unique vertex in V (Km) of out-degree zero
and the remaining vertices all have out-degree one.

As in the proof of former theorem, link an edge (v, y) between y ∈ Y ′ and a vertex v ∈ V (Km)
of out-degree zero in any component not containing y in the graph already constructed, we repeat
this procedure i times, where, 0 ≤ i ≤ s− l, because the required forests have l roots in V (Km).

There are

[(n− k)(s− 1)][(n− k)(s− 2)] · · · [(n− k)(s− i)]

i!
=

(
s− 1

i

)
(n− k)i (5)

ways.
Every graph G′ we obtained will have s − i components each of which has a unique vertex in

V (Km) of out-degree zero. Now, choose the s − i − l vertices of out-degree zero in these s − i
components and link edges from these s− i− l vertices to k roots yi1 , yi2 , · · · , yik . There are(

s− i

s− i− l

)
ks−i−l =

(
s− i

l

)
ks−i−l (6)

ways.
Therefore, by (5) and (6), the number of the rooted spanning forests of Km + Hn which are

obtained from F is equal to

s−l∑
i=0

(
s− 1

i

)(
s− i

l

)
(n− k)iks−i−l =

(
s

l

)
ns−l −

(
s

l

)
s− l

s
ns−l−1(n− k). (7)
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Hence, by (2), (7) and Lemma 2.1, the number g(m, l;n, k) of the labelled spanning forests of
Km +Hn with l roots in Km and k roots in Hn is as follows.

g(m, l;n, k) =

(
n

k

) m∑
s=l

|D(m, s)|mn−k
s−l∑
i=0

(
s− 1

i

)(
s− i

l

)
(n− k)iks−i−l

=

(
n

k

) m∑
s=l

(
m

s

)
smm−s−1mn−k

[(
s

l

)
ns−l −

(
s

l

)
s− l

s
ns−l−1(n− k)

]
=

(
m

l

)(
n

k

)
mn−k−1(m+ n)m−l−1(lm+mk + ln− lk).

We get the required result. 2

Corollary 2.1. The number S(m,n) of all spanning forests of the join graph Km +Hn is equal to

S(m,n) = (m+ n+ 1)m(m+ 1)n−1. (8)

Proof By Theorem 2.2,

S(m,n) =
m∑
l=0

n∑
k=0

g(m, l;n, k)

=
m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
mn−k−1(m+ n)m−l−1(lm+mk + ln− kl)

= (m+ n+ 1)m(m+ 1)n−1.

Thus, this corollary is true. 2

3. Enumeration for spanning trees and forests of a join graph Km + Kn,p

In this section, we consider another join graph Km+Kn,p where Km is the complete graph and
Kn,p is the complete bipartite graph. We will show how to count the number of the spanning trees
of a join graph Km +Kn,p. Clearly, Km +Kn,p = (Km +Hn) +Hp. Let D(m, l;n, k) be the set
of the labelled spanning forests of Km +Hn with l roots in Km and k roots in Hn, i.e.,

g(m, l;n, k) = |D(m, l;n, k)|. (9)

Theorem 3.1. The number g(m,n, p) of the spanning trees of Km +Kn,p is equal to

g(m,n, p) = (m+ n)p−1(m+ p)n−1(m+ n+ p)m. (10)

Proof Let V (Km + Hn) = {x1, x2, · · · , xm; y1, y2, ..., yn} be the vertex set of Km + Hn and
V (Hp) = {z1, z2, ..., zp} be the vertex set of Hp. Let z1 ∈ V (Hp) be the given roots of Km +Kn,p

and Z ′ = V (Hp)\{z1}, D(m, 0;n, 0; p, |{z1}|) be the set of the labelled spanning trees of Km +
Kn,p with root z1. Clearly,

g(m,n, p) = |D(m, 0;n, 0; p, |{z1}|)|.
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We shall obtain the spanning trees in D(m, 0;n, 0; p, |{z1}|) from every graph F ∈ D(m, l;n, k).
As in the proof of former theorem, link an edge (z, v) between every z ∈ Z ′ and some v ∈ V (F ).
There are (m+n)p−1 ways. Notice that the obtained graph G has l+k (weakly) connected compo-
nents each of which has a unique vertex in V (Km) ∪ V (Hn) of out-degree zero and the remaining
vertices all have out-degree one.

For any fixed integer t such that 0 ≤ t ≤ l + k − 1, link an edge (v, z) between z ∈ Z ′ and
a vertex v ∈ V (Km) ∪ V (Hn) of out-degree zero in any component not containing z in the graph
already constructed, we repeat this procedure t times.

There are

[(p− 1)(l + k − 1)][(p− 1)(l + k − 2)] · · · [(p− 1)(l + k − t)]

t!
=

(
l + k − 1

t

)
(p− 1)t

ways. Therefore, the number of the spanning trees which are obtained from F is equal to

l+k−1∑
t=0

(
l + k − 1

t

)
(p− 1)t = pl+k−1.

Hence, by (9) and Theorem 2.2,

g(m,n, p) = |D(m, 0;n, 0; p, |{z1}|)|

=
m∑
l=0

n∑
k=0

|D(m, l;n, k)|pl+k−1(m+ n)p−1

=
m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
mn−k−1(m+ n)m−l−1(lm+ km+ ln− lk)pk+l−1(m+ n)p−1

= (m+ n)p−1(m+ p)n−1(m+ n+ p)m.

Therefore, we get the required result. 2

Theorem 3.2. The number S(m,n, p) of all spanning forests of the join graph Km+Kn,p is equal
to

S(m,n, p) = (m+ n+ p+ 1)m+1(m+ n+ 1)p−1(m+ p+ 1)n−1. (11)

Proof Let B(p, r) denote the set of spanning forests of the join graph Km+Kn,p = (Km+Hn)+Hp

which r roots are in V (Hp) and remaining roots are in V (Km) or V (Hn).
From every graph F ∈ D(m, l;n, k), we will construct the rooted spanning forests of (Km +

Hn) + Hp with r roots in V (Hp) as follows. Let zi1 , zi2 , · · · , zir ∈ V (Hp) be root vertices. The
number of ways to select r roots in V (Hp) is equal to

(
p
r

)
. Let Z ′ = V (Hp)\{zi1 , zi2 , · · · , zir}.

Link an edge (z, v) between every v ∈ Z ′ and some v ∈ V (F ). There are (m+n)p−r ways. Notice
that the obtained graph G has l + k (weakly) connected components each of which has a unique
vertex in V (Km) ∪ V (Hn) of out-degree zero and the remaining vertices all have out-degree one.

As in the proof of former theorem, for any fixed integer t such that 0 ≤ t ≤ l + k − 1, link an
edge (v, z) between z ∈ Z ′ and a vertex v ∈ V (Km)∪V (Hn) of out-degree zero in any component
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not containing z in the graph already constructed, we repeat this procedure t times. There are
[(p− r)(l + k − 1)][(p− r)(l + k − 2)] · · · [(p− r)(l + k − t)]

t!
=

(
l + k − 1

t

)
(p− r)t

ways.
The graph G′ thus constructed has l + k − t components each of which has a unique vertex in

V (Km) ∪ V (Hn) of out-degree zero and the remaining vertices all have out-degree one; if we add
edges from some vertices of these vertices of out-degree zero to zi1 , zi2 , · · · , zir ∈ Z, we obtain a
forest in B(p, r) that contains G. There are (r + 1)l+k−t ways. Therefore, this implies that there
are

l+k−1∑
t=0

(
l + k − 1

t

)
(p− r)t(r + 1)l+k−t = (r + 1)(p+ 1)l+k−1

forests in B(p, r) that contain G. Hence, by (9) and Theorem 2.2,

S(m,n, p) =
m∑
l=0

n∑
k=0

|D(m, l;n, k)|
p∑

r=0

(
p

r

)
(m+ n)p−r(r + 1)(p+ 1)l+k−1

=
m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
mn−k−1(m+ n)m−l−1(lm+mk + ln− lk)

p∑
r=0

(
p

r

)
(m+ n)p−r(r + 1)(p+ 1)l+k−1

= (m+ n+ p+ 1)m+1(m+ n+ 1)p−1(m+ p+ 1)n−1.

Thus, this theorem is true. 2
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