

Electronic Journal of Graph Theory and Applications

Spectra of graphs and the spectral criterion for property (T)

Alain Valette

Institut de Mathématiques Université de Neuchâtel Unimail 11 Rue Emile Argand CH-2000 Neuchâtel, Switzerland

alain.valette@unine.ch

Abstract

For a finite connected graph X, we consider the graph RX obtained from X by associating a new vertex to every edge of X and joining by edges the extremities of each edge of X to the corresponding new vertex. We express the spectrum of the Laplace operator on RX as a function of the corresponding spectrum on X. As a corollary, we show that X is a complete graph if and only if $\lambda_1(RX) > \frac{1}{2}$. We give a re-interpretation of the correspondence $X \mapsto RX$ in terms of the right-angled Coxeter group defined by X.

Keywords: graph spectrum, Coxeter group, property (T), spectral criterion Mathematics Subject Classification : 05C50 DOI:10.5614/ejgta.2017.5.1.11

1. Introduction

Let X = (V, E) be a finite, connected graph. Denote by \sim the adjacency relation on V; that is, $x \sim y$ if and only if $\{x, y\} \in E$. Endow the space $\mathbb{R}V$ of real-valued functions on V with the scalar product $\langle f|g \rangle = \sum_{x \in V} f(x)g(x) \deg(x)$, where $\deg(x)$ is the number of neighbors of x.

Received: 15 November 2016, Revised: 7 February 2017, Accepted: 20 February 2017.

The *combinatorial Laplace operator* of X is the operator Δ_X on $\mathbb{R}V$, defined by

$$(\Delta_X f)(x) = f(x) - \frac{1}{\deg(x)} \sum_{y \sim x} f(y)$$

 $(f \in \mathbb{R}V, x \in V)$. It is classical that Δ_X is self-adjoint with respect to $\langle . | . \rangle$ (that is, $\langle \Delta_X f | g \rangle = \langle f | \Delta_X g \rangle$ for every $f, g \in \mathbb{R}V$), and has spectrum contained in [0, 2]; the associated quadratic form is given by:

$$\langle \Delta_X f | f \rangle = \frac{1}{2} \sum_{x,y: x \sim y} (f(x) - f(y))^2$$

 $(f \in \mathbb{R}V)$; see [4] for all this. Then 0 is a multiplicity 1 eigenvalue of Δ_X , and we denote by $\lambda_1(X)$ the smallest non-zero eigenvalue of X.

We denote by RX the graph with vertex set $V \sqcup E$ (the disjoint union of V and E) and adjacency relation given by:

- if $x, y \in V$: $x \sim y \Leftrightarrow \{x, y\} \in E$;
- if $x \in V$, $e \in E : x \sim e \Leftrightarrow x \in e$;
- if $e, e' \in E$, then e, e' are not adjacent in RX.

Graphically, this means that every edge $e = \{x, y\}$ in X gets replaced in RX by a triangle $\{x, y, e\}$ (with deg e = 2)¹. This operation on graphs was considered by Cvetkovic [5], who computed, in case X is regular, the spectrum of the adjacency operator of RX as a function of the corresponding spectrum for X (see Theorem 3 in [5]).

The purpose of this note is twofold. First, we explain the relevance of the transformation $X \mapsto RX$ in terms of Cayley graphs for the right-angled Coxeter group associated with X. Second, we compute the spectrum $Sp \Delta_{RX}$ of Δ_{RX} in terms of the spectrum $Sp \Delta_X$ of Δ_X , without regularity assumption on X. Observe that, for $f \in \mathbb{R}(V \sqcup E)$:

$$(\Delta_{RX}f)(y) = \begin{cases} f(y) - \frac{1}{2\deg(y)} [\sum_{x \in V, x \sim y} f(x) + \sum_{e \in E, y \in E} f(e)] & \text{if } y \in V \\ f(y) - \frac{1}{2} \sum_{x \in y} f(x) & \text{if } y \in E \end{cases}$$
(1)

The following result will be proved in Section 3:

Proposition 1.1. Let X be a finite connected graph with n vertices and m edges. A real number $\lambda \in [0, 2]$ is an eigenvalue of Δ_{RX} if and only some of the following cases occurs:

- $\lambda = 1$ (this case occurs only if m > n);
- $\lambda = \frac{3}{2}$;

¹The graph RX should NOT be confused with the total graph TX, whose set of vertices is also $V \sqcup E$ but the 3rd condition above gets replaced by: there is an edge between $e, e' \in E$ if and only if e and e' are incident in X. So RX is a spanning subgraph of TX.

• 2λ is an eigenvalue of Δ_X .

Taking into account the fact that, for the complete graph K_n on n vertices, we have $Sp(\Delta_{K_n}) = \{0, \frac{n}{n-1}\}$, and that $\lambda_1 > 1$ characterizes complete graphs (see Lemma 1.7 in [4]), we get as an immediate corollary:

Corollary 1.1. Let X be a finite connected graph. The following are equivalent:

- *i*) $\lambda_1(RX) > \frac{1}{2}$;
- *ii)* X *is a complete graph.*

However, it is possible to give a direct, group-theoretic proof of the implication $(i) \Rightarrow (ii)$ in Corollary 1.1: this will be done in Section 2.

2. Cayley graphs and property (T)

Recall that a finitely generated group Γ has property (T) if every affine isometric action of Γ on a Hilbert space, has a fixed point. We refer to [2] for examples, characterizations and applications of property (T).

Let Γ be a finitely generated group and let S be a finite generating subset such that $S = S^{-1}$ and $1 \notin S$. Let $\mathcal{G}(\Gamma, S)$ be the Cayley graph of Γ with respect to S; that is, the vertex set is Γ , and two vertices $x, y \in \Gamma$ are adjacent if $x^{-1}y \in S$. Let X_S be the graph induced by $\mathcal{G}(\Gamma, S)$ on S; that is, the vertex set of X_S is S, and two elements $s, t \in S$ are adjacent if $s^{-1}t \in S$. The *spectral criterion for property* (*T*) (see [1], [6], [7]; see also [2], Theorem 5.5.2) is the statement that, if X_S is connected and $\lambda_1(X_S) > \frac{1}{2}$, then Γ has property (T).

Proof of $(i) \Rightarrow (ii)$ in Corollary 1.1: Let X = (V, E) be a finite connected graph and let W_X be the right-angled Coxeter group associated with X; this is the group defined by the presentation:

$$W_X = \langle s \in V | s^2 = 1 \ (s \in V); \ st = ts \ (\{s, t\} \in E) \rangle.$$

We will need two standard facts about Coxeter groups:

- (a) An infinite Coxeter group does not have property (T) (see [3]);
- (b) If $\{s, t\} \notin E$, then st has infinite order in W_X .

We define a new generating set of W_X by:

$$S =: X \cup \{ st = ts : \{ s, t \} \in E \}.$$

Observe that, if st = ts, then for any two distinct $x, y \in \{s, t, st\}$, the quotient $x^{-1}y$ is still in $\{s, t, st\}$. In other words, the graph X_S induced by $\mathcal{G}(W_X, S)$ on S, is isomorphic to RX.

So, if we assume $\lambda_1(RX) > \frac{1}{2}$, then W_X has property (T) by the spectral criterion. By fact (a) above, W_X is a finite group, which of course implies that st has finite order for every $s, t \in V$. By fact (b), we must have $s \sim t$ for every $s, t \in V$; that is, X is a complete graph.

3. The Laplace operator on RX

Recall that the Laplace operator on X, as a matrix indexed by $V \times V$, is:

$$(\Delta_X)_{xy} = \begin{cases} 1 & \text{if } x = y \\ -\frac{1}{\deg(x)} & \text{if } x \sim y \\ 0 & \text{if } x \neq y, x \nsim y \end{cases}$$

Set |V| = n and |E| = m. Turning to RX with vertex set $E \sqcup V$, recall that $\deg_{RX}(e) = 2$ for $e \in E$ and $\deg_{RX}(x) = 2 \deg(x)$ for $x \in V$. So, from (1), the Laplace operator Δ_{RX} on RX is a $(m+n) \times (m+n)$ matrix:

$$\Delta_{RX} = \left(\begin{array}{cc} 1_m & B \\ A & 1_n - \frac{1}{2}M_X \end{array}\right)$$

where $(M_X f)(x) = \frac{1}{\deg(x)} \sum_{y \sim x} f(y)$ is the Markov operator on X (with $f \in \mathbb{R}V$) and, for $x \in V, e \in E$:

$$A_{xe} = \begin{cases} -\frac{1}{2 \operatorname{deg}(x)} & \text{if } x \in e \\ 0 & \text{if } x \notin e \end{cases}$$
$$B_{ex} = \begin{cases} -\frac{1}{2} & \text{if } x \in e \\ 0 & \text{if } x \notin e \end{cases}$$

Observe that

$$(AB)_{xy} = \begin{cases} 0 & \text{if } x \neq y, x \nsim y \\ \frac{1}{4 \operatorname{deg}(x)} & \text{if } x \sim y \\ \frac{1}{4} & \text{if } x = y \end{cases}$$

So that

$$AB = \frac{1}{4}(1_n + M_X) = \frac{1}{4}(2 \cdot 1_n - \Delta_X).$$
(2)

The characteristic polynomial of Δ_{RX} is

$$P_{RX}(\lambda) = \det(\Delta_{RX} - \lambda \cdot \mathbf{1}_{m+n}) = \det\left(\begin{array}{cc} (1-\lambda)\mathbf{1}_m & B\\ A & (\frac{1}{2} - \lambda)\mathbf{1}_n + \frac{1}{2}\Delta_X \end{array}\right)$$

For $\lambda \neq 1$, multiply on the left by the unimodular matrix $\begin{pmatrix} 1_m & 0\\ -(1-\lambda)^{-1}A & 1_n \end{pmatrix}$ to get

$$P_{RX}(\lambda) = \det \begin{pmatrix} (1-\lambda)1_m & B\\ 0 & (\frac{1}{2}-\lambda)1_n + \frac{\Delta_X}{2} - (1-\lambda)^{-1}AB \end{pmatrix}$$
$$= (1-\lambda)^m \det[(\frac{1}{2}-\lambda)1_n + \frac{\Delta_X}{2} - (1-\lambda)^{-1}AB]$$
$$= (1-\lambda)^{m-n} \det[(1-\lambda)(\frac{1}{2}-\lambda)1_n + \frac{(1-\lambda)\Delta_X}{2} - AB]$$

www.ejgta.org

By Equation (2):

$$P_{RX}(\lambda) = (1 - \lambda)^{m-n} \det[(1 - \lambda)(\frac{1}{2} - \lambda)1_n + \frac{(1 - \lambda)\Delta_X}{2} - \frac{1}{4}(2 \cdot 1_n - \Delta_X)]$$

= $(1 - \lambda)^{m-n} \det[(\lambda - \frac{3}{2})(\lambda - \frac{\Delta_X}{2})]$
= $2^{-n}(1 - \lambda)^{m-n}(\lambda - \frac{3}{2})^n \det(2\lambda - \Delta_X)$

So

$$P_{RX}(\lambda) = 2^{-n} (1-\lambda)^{m-n} (\frac{3}{2} - \lambda)^n P_X(2\lambda)$$
(3)

Proposition 1.1 immediately follows from equation (3).

Acknowledgement

The author expresses his debt to Pierre-Emmanuel Caprace for sharing his ideas of introducing right-angled Coxeter groups and making the link with the spectral criterion for property (T). The paper was written as the author was in a residence at MSRI (Berkeley, CA) as a Simons research professor during the Fall 2016 semester; he acknowledges support from grant DMS-1440140 of the National Science Foundation.

References

- W. Ballmann and J. Swiatkowski, On L²-cohomology and Property (T) for Automorphism Groups of Polyhedral Cell Complexes, *Geom. Funct. Anal. (GAFA)* 7 (1997), 615–645.
- [2] B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), *New Mathematical Mono-graphs*, Cambridge University Press (2008).
- [3] M. Bożejko, T. Januszkiewicz, R.J. Spatzier, Infinite Coxeter groups do not have Kazhdan's property, *J. Operator Theory* **19** (1) (1988), 63–67.
- [4] F.R.K. Chung, Spectral graph theory, *CBMS Regional Conference Series in Mathematics* **92**, Amer. Math. Soc. (1997).
- [5] D.M. Cvetkovic, Spectra of graphs formed by some unary operations, *Publ. Inst. Math.* (*Beograd*) **19** (1975), 37–41.
- [6] P. Pansu, Formules de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, *Bull. Soc. Math. France* **126** (1998), 107–139.
- [7] A. Zuk, Property (T) and Kazhdan constants for discrete groups, *Geom. Funct. Anal (GAFA)* 13 (2003), 643–670.