Spectra of graphs and the spectral criterion for property (T)

Alain Valette
Institut de Mathématiques
Université de Neuchâtel
Unimail
11 Rue Emile Argand
CH-2000 Neuchâtel, Switzerland

alain.valette@unine.ch

Abstract

For a finite connected graph X, we consider the graph $R X$ obtained from X by associating a new vertex to every edge of X and joining by edges the extremities of each edge of X to the corresponding new vertex. We express the spectrum of the Laplace operator on $R X$ as a function of the corresponding spectrum on X. As a corollary, we show that X is a complete graph if and only if $\lambda_{1}(R X)>\frac{1}{2}$. We give a re-interpretation of the correspondence $X \mapsto R X$ in terms of the right-angled Coxeter group defined by X.

Keywords: graph spectrum, Coxeter group, property (T), spectral criterion
Mathematics Subject Classification : 05C50
DOI:10.5614/ejgta.2017.5.1.11

1. Introduction

Let $X=(V, E)$ be a finite, connected graph. Denote by \sim the adjacency relation on V; that is, $x \sim y$ if and only if $\{x, y\} \in E$. Endow the space $\mathbb{R} V$ of real-valued functions on V with the scalar product $\langle f \mid g\rangle=\sum_{x \in V} f(x) g(x) \operatorname{deg}(x)$, where $\operatorname{deg}(x)$ is the number of neighbors of x.

Received: 15 November 2016, Revised: 7 February 2017, Accepted: 20 February 2017.

The combinatorial Laplace operator of X is the operator Δ_{X} on $\mathbb{R} V$, defined by

$$
\left(\Delta_{X} f\right)(x)=f(x)-\frac{1}{\operatorname{deg}(x)} \sum_{y \sim x} f(y)
$$

$(f \in \mathbb{R} V, x \in V)$. It is classical that Δ_{X} is self-adjoint with respect to $\langle. \mid$.$\rangle (that is, \left\langle\Delta_{X} f \mid g\right\rangle=$ $\left\langle f \mid \Delta_{X} g\right\rangle$ for every $f, g \in \mathbb{R} V$), and has spectrum contained in $[0,2]$; the associated quadratic form is given by:

$$
\left\langle\Delta_{X} f \mid f\right\rangle=\frac{1}{2} \sum_{x, y: x \sim y}(f(x)-f(y))^{2}
$$

$(f \in \mathbb{R} V)$; see [4] for all this. Then 0 is a multiplicity 1 eigenvalue of Δ_{X}, and we denote by $\lambda_{1}(X)$ the smallest non-zero eigenvalue of X.

We denote by $R X$ the graph with vertex set $V \sqcup E$ (the disjoint union of V and E) and adjacency relation given by:

- if $x, y \in V: x \sim y \Leftrightarrow\{x, y\} \in E$;
- if $x \in V, e \in E: x \sim e \Leftrightarrow x \in e$;
- if $e, e^{\prime} \in E$, then e, e^{\prime} are not adjacent in $R X$.

Graphically, this means that every edge $e=\{x, y\}$ in X gets replaced in $R X$ by a triangle $\{x, y, e\}$ (with $\operatorname{deg} e=2)^{1}$. This operation on graphs was considered by Cvetkovic [5], who computed, in case X is regular, the spectrum of the adjacency operator of $R X$ as a function of the corresponding spectrum for X (see Theorem 3 in [5]).

The purpose of this note is twofold. First, we explain the relevance of the transformation $X \mapsto$ $R X$ in terms of Cayley graphs for the right-angled Coxeter group associated with X. Second, we compute the spectrum $S p \Delta_{R X}$ of $\Delta_{R X}$ in terms of the spectrum $S p \Delta_{X}$ of Δ_{X}, without regularity assumption on X. Observe that, for $f \in \mathbb{R}(V \sqcup E)$:

$$
\left(\Delta_{R X} f\right)(y)=\left\{\begin{array}{cl}
f(y)-\frac{1}{2 \operatorname{deg}(y)}\left[\sum_{x \in V, x \sim y} f(x)+\sum_{e \in E, y \in E} f(e)\right] & \text { if } y \in V \tag{1}\\
f(y)-\frac{1}{2} \sum_{x \in y} f(x) & \text { if } y \in E
\end{array}\right.
$$

The following result will be proved in Section 3:
Proposition 1.1. Let X be a finite connected graph with n vertices and m edges. A real number $\lambda \in[0,2]$ is an eigenvalue of $\Delta_{R X}$ if and only some of the following cases occurs:

- $\lambda=1$ (this case occurs only if $m>n$);
- $\lambda=\frac{3}{2}$;

[^0]- 2λ is an eigenvalue of Δ_{X}.

Taking into account the fact that, for the complete graph K_{n} on n vertices, we have $S p\left(\Delta_{K_{n}}\right)=$ $\left\{0, \frac{n}{n-1}\right\}$, and that $\lambda_{1}>1$ characterizes complete graphs (see Lemma 1.7 in [4]), we get as an immediate corollary:

Corollary 1.1. Let X be a finite connected graph. The following are equivalent:
i) $\lambda_{1}(R X)>\frac{1}{2}$;
ii) X is a complete graph.

However, it is possible to give a direct, group-theoretic proof of the implication $(i) \Rightarrow($ ii $)$ in Corollary 1.1: this will be done in Section 2.

2. Cayley graphs and property (T)

Recall that a finitely generated group Γ has property (T) if every affine isometric action of Γ on a Hilbert space, has a fixed point. We refer to [2] for examples, characterizations and applications of property (T).

Let Γ be a finitely generated group and let S be a finite generating subset such that $S=S^{-1}$ and $1 \notin S$. Let $\mathcal{G}(\Gamma, S)$ be the Cayley graph of Γ with respect to S; that is, the vertex set is Γ, and two vertices $x, y \in \Gamma$ are adjacent if $x^{-1} y \in S$. Let X_{S} be the graph induced by $\mathcal{G}(\Gamma, S)$ on S; that is, the vertex set of X_{S} is S, and two elements $s, t \in S$ are adjacent if $s^{-1} t \in S$. The spectral criterion for property (T) (see [1], [6], [7]; see also [2], Theorem 5.5.2) is the statement that, if X_{S} is connected and $\lambda_{1}\left(X_{S}\right)>\frac{1}{2}$, then Γ has property (T).

Proof of $(i) \Rightarrow(i i)$ in Corollary 1.1: Let $X=(V, E)$ be a finite connected graph and let W_{X} be the right-angled Coxeter group associated with X; this is the group defined by the presentation:

$$
W_{X}=\left\langle s \in V \mid s^{2}=1(s \in V) ; s t=t s(\{s, t\} \in E)\right\rangle
$$

We will need two standard facts about Coxeter groups:
(a) An infinite Coxeter group does not have property (T) (see [3]);
(b) If $\{s, t\} \notin E$, then $s t$ has infinite order in W_{X}.

We define a new generating set of W_{X} by:

$$
S=: X \cup\{s t=t s:\{s, t\} \in E\}
$$

Observe that, if $s t=t s$, then for any two distinct $x, y \in\{s, t, s t\}$, the quotient $x^{-1} y$ is still in $\{s, t, s t\}$. In other words, the graph X_{S} induced by $\mathcal{G}\left(W_{X}, S\right)$ on S, is isomorphic to $R X$.

So, if we assume $\lambda_{1}(R X)>\frac{1}{2}$, then W_{X} has property (T) by the spectral criterion. By fact (a) above, W_{X} is a finite group, which of course implies that $s t$ has finite order for every $s, t \in V$. By fact (b), we must have $s \sim t$ for every $s, t \in V$; that is, X is a complete graph.

3. The Laplace operator on $R X$

Recall that the Laplace operator on X, as a matrix indexed by $V \times V$, is:

$$
\left(\Delta_{X}\right)_{x y}=\left\{\begin{array}{ccc}
1 & \text { if } & x=y \\
-\frac{1}{\operatorname{deg}(x)} & \text { if } & x \sim y \\
0 & \text { if } & x \neq y, x \nsim y
\end{array}\right.
$$

Set $|V|=n$ and $|E|=m$. Turning to $R X$ with vertex set $E \sqcup V$, recall that $\operatorname{deg}_{R X}(e)=2$ for $e \in E$ and $\operatorname{deg}_{R X}(x)=2 \operatorname{deg}(x)$ for $x \in V$. So, from (1), the Laplace operator $\Delta_{R X}$ on $R X$ is a $(m+n) \times(m+n)$ matrix:

$$
\Delta_{R X}=\left(\begin{array}{cc}
1_{m} & B \\
A & 1_{n}-\frac{1}{2} M_{X}
\end{array}\right)
$$

where $\left(M_{X} f\right)(x)=\frac{1}{\operatorname{deg}(x)} \sum_{y \sim x} f(y)$ is the Markov operator on X (with $f \in \mathbb{R} V$) and, for $x \in V, e \in E$:

$$
\begin{gathered}
A_{x e}=\left\{\begin{array}{cll}
-\frac{1}{2 \operatorname{deg}(x)} & \text { if } & x \in e \\
0 & \text { if } & x \notin e
\end{array}\right. \\
B_{e x}=\left\{\begin{array}{cll}
-\frac{1}{2} & \text { if } & x \in e \\
0 & \text { if } & x \notin e
\end{array}\right.
\end{gathered}
$$

Observe that

$$
(A B)_{x y}=\left\{\begin{array}{ccc}
0 & \text { if } & x \neq y, x \nsim y \\
\frac{1}{4 \operatorname{deg}(x)} & \text { if } & x \sim y \\
\frac{1}{4} & \text { if } & x=y
\end{array}\right.
$$

So that

$$
\begin{equation*}
A B=\frac{1}{4}\left(1_{n}+M_{X}\right)=\frac{1}{4}\left(2 \cdot 1_{n}-\Delta_{X}\right) \tag{2}
\end{equation*}
$$

The characteristic polynomial of $\Delta_{R X}$ is

$$
P_{R X}(\lambda)=\operatorname{det}\left(\Delta_{R X}-\lambda \cdot 1_{m+n}\right)=\operatorname{det}\left(\begin{array}{cc}
(1-\lambda) 1_{m} & B \\
A & \left(\frac{1}{2}-\lambda\right) 1_{n}+\frac{1}{2} \Delta_{X}
\end{array}\right)
$$

For $\lambda \neq 1$, multiply on the left by the unimodular matrix $\left(\begin{array}{cc}1_{m} & 0 \\ -(1-\lambda)^{-1} A & 1_{n}\end{array}\right)$ to get

$$
\begin{aligned}
P_{R X}(\lambda) & =\operatorname{det}\left(\begin{array}{cc}
(1-\lambda) 1_{m} & B \\
0 & \left(\frac{1}{2}-\lambda\right) 1_{n}+\frac{\Delta_{X}}{2}-(1-\lambda)^{-1} A B
\end{array}\right) \\
& =(1-\lambda)^{m} \operatorname{det}\left[\left(\frac{1}{2}-\lambda\right) 1_{n}+\frac{\Delta_{X}}{2}-(1-\lambda)^{-1} A B\right] \\
= & (1-\lambda)^{m-n} \operatorname{det}\left[(1-\lambda)\left(\frac{1}{2}-\lambda\right) 1_{n}+\frac{(1-\lambda) \Delta_{X}}{2}-A B\right]
\end{aligned}
$$

By Equation (2):

$$
\begin{gathered}
P_{R X}(\lambda)=(1-\lambda)^{m-n} \operatorname{det}\left[(1-\lambda)\left(\frac{1}{2}-\lambda\right) 1_{n}+\frac{(1-\lambda) \Delta_{X}}{2}-\frac{1}{4}\left(2 \cdot 1_{n}-\Delta_{X}\right)\right] \\
=(1-\lambda)^{m-n} \operatorname{det}\left[\left(\lambda-\frac{3}{2}\right)\left(\lambda-\frac{\Delta_{X}}{2}\right)\right] \\
=2^{-n}(1-\lambda)^{m-n}\left(\lambda-\frac{3}{2}\right)^{n} \operatorname{det}\left(2 \lambda-\Delta_{X}\right)
\end{gathered}
$$

So

$$
\begin{equation*}
P_{R X}(\lambda)=2^{-n}(1-\lambda)^{m-n}\left(\frac{3}{2}-\lambda\right)^{n} P_{X}(2 \lambda) \tag{3}
\end{equation*}
$$

Proposition 1.1 immediately follows from equation (3).

Acknowledgement

The author expresses his debt to Pierre-Emmanuel Caprace for sharing his ideas of introducing right-angled Coxeter groups and making the link with the spectral criterion for property (T). The paper was written as the author was in a residence at MSRI (Berkeley, CA) as a Simons research professor during the Fall 2016 semester; he acknowledges support from grant DMS-1440140 of the National Science Foundation.

References

[1] W. Ballmann and J. Swiatkowski, On L^{2}-cohomology and Property (T) for Automorphism Groups of Polyhedral Cell Complexes, Geom. Funct. Anal. (GAFA) 7 (1997), 615-645.
[2] B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T), New Mathematical Monographs, Cambridge University Press (2008).
[3] M. Bożejko, T. Januszkiewicz, R.J. Spatzier, Infinite Coxeter groups do not have Kazhdan's property, J. Operator Theory 19 (1) (1988), 63-67.
[4] F.R.K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics 92, Amer. Math. Soc. (1997).
[5] D.M. Cvetkovic, Spectra of graphs formed by some unary operations, Publ. Inst. Math. (Beograd) 19 (1975), 37-41.
[6] P. Pansu, Formules de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc. Math. France 126 (1998), 107-139.
[7] A. Zuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal (GAFA) 13 (2003), 643-670.

[^0]: ${ }^{1}$ The graph $R X$ should NOT be confused with the total graph $T X$, whose set of vertices is also $V \sqcup E$ but the 3rd condition above gets replaced by: there is an edge between $e, e^{\prime} \in E$ if and only if e and e^{\prime} are incident in X. So $R X$ is a spanning subgraph of $T X$.

