Electronic Journal of Graph Theory and Applications

On size multipartite Ramsey numbers for stars versus paths and cycles

Anie Lusiani ${ }^{1}$, Edy Tri Baskoro, Suhadi Wido Saputro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Jalan Ganesa 10 Bandung, Indonesia
anielusiani@students.itb.ac.id, ebaskoro@math.itb.ac.id, suhadi@math.itb.ac.id

Abstract

Let $K_{l \times t}$ be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G_{1} and G_{2}, and integer $j \geq 2$, the size multipartite Ramsey number $m_{j}\left(G_{1}, G_{2}\right)$ is the smallest integer t such that every factorization of the graph $K_{j \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} or F_{2} contains G_{2}. In 2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths P_{n} versus stars, for $n=2,3$ only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers of paths P_{n} versus stars, for $n=3,4,5,6$. In this paper, we investigate the size tripartite Ramsey numbers of paths P_{n} versus stars, with all $n \geq 2$. Our results complete the previous results given by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers $m_{2}\left(K_{1, m}, C_{n}\right)$ of stars versus cycles, for $n \geq 3, m \geq 2$.

Keywords: size multipartite Ramsey number, star, path, cycle Mathematics Subject Classification : 05D10, 05C55
DOI:10.5614/ejgta.2017.5.1.5

[^0]On size multipartite Ramsey numbers for stars versus paths and cycles \mid Anie Lusiani et al.

1. Introduction

Burger and Vuuren[1] studied one of generalizations of the classical Ramsey number problem. They introduced the size multipartite Ramsey number as follow. Let j, l, n, s and t be natural numbers with $n, s \geq 2$. The size multipartite Ramsey number $m_{j}\left(K_{n \times l}, K_{s \times t}\right)$ is the smallest natural number ζ such that an arbitrary coloring of the edges of $K_{j \times \zeta}$, using the two colors red and blue, necessarily forces a red $K_{n \times l}$ or a blue $K_{s \times t}$ as a subgraph. They also determined the exact values of $m_{1}\left(K_{2 \times 2}, K_{2 \times 2}\right)$ and $m_{j}\left(K_{2 \times 2}, K_{3 \times 1}\right)$, for $j \geq 1$.

In [10], Syafrizal et al. generalized this concept by removing the completeness requirement as follows. For given two graphs G_{1} and G_{2}, and integer $j \geq 2$, the size multipartite Ramsey number $m_{j}\left(G_{1}, G_{2}\right)=t$ is the smallest integer such that every factorization of graph $K_{j \times t}:=F_{1} \oplus F_{2}$ satisfies the following condition: either F_{1} contains G_{1} as a subgraph or F_{2} contains G_{2} as a subgraph. They also determined the size multipartite Ramsey numbers of paths versus other graphs, especially cycles and stars $[10,11,12]$. In this paper, we determine the size multipartite Ramsey numbers, $m_{j}\left(K_{1, m}, H\right)$, for $j=2,3$, where H is a path or a cycle on n vertices, and $K_{1, m}$ is a star of order $m+1$.

Let G be a simple and finite graph. The null graph is the graph with n vertices and zero edges. A matching of a graph G is defined as a set of edges without a common vertex. The maximum degree of G is denoted by $\Delta(G)$, where $\Delta(G)=\max \left\{d_{G}(v) \mid v \in V(G)\right\}$. The minimum degree of G is denoted by $\delta(G)$, where $\delta(G)=\min \left\{d_{G}(v) \mid v \in V(G)\right\}$. A graph G of order n is called Hamiltonian if it contains a cycle of length n and it called bipancyclic if it contains cycles of all even lengths from 4 to n. A connected graph G is said to be k-connected, if it has more than k vertices and remains connected whenever fewer than k vertices are removed. A set U of vertices in a graph G is independent if no two vertices in U are adjacent. The maximum number of vertices in an independent set of vertices of G is called independent number of G and is denoted by $\alpha(G)$. For two vertices $x, y \in G$, if x is adjacent to y, then we denote by $x \sim y$. Otherwise, we denote by $x \nsim y$.

In this paper, we also use the following theorems to prove our results.
Theorem 1.1. [4] If G is a graph of order n and the minimum degree of $G, \delta(G) \geq \frac{n}{2}$, then G is a Hamiltonian.

Theorem 1.2. [3] Let G be an s-connected graph with no independent set of $s+2$ vertices. Then, G has a Hamiltonian path.
Theorem 1.3. [8] Let G be a balanced bipartite graph on $2 n$ vertices. If the minimum degree of $G, \delta(G) \geq \frac{n+1}{2}$, then G is bipancyclic.

2. Stars versus Paths

Hattingh and Henning gave the results for the size bipartite Ramsey numbers of stars versus paths, as follows.

Theorem 2.1. [5] For positive integers $m, n \geq 2$,

$$
m_{2}\left(K_{1, m}, P_{n}\right)= \begin{cases}\frac{n}{2}+m-1, & \text { for } m \leq \frac{n}{2}+1, n \text { is even, } \\ \frac{n-1}{2}+m, & \text { for } m \leq \frac{n-1}{2}+1, n \text { is odd, } m-1 \equiv 0 \bmod \left(\frac{n-1}{2}\right), \\ \frac{n-1}{2}+m-1, & \text { for } m \leq \frac{n-1}{2}+1, n \text { is odd, } m-1 \neq 0 \bmod \left(\frac{n-1}{2}\right), \\ 2 m-1, & \text { for } \frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor+1 \leq m<\left\lfloor\frac{n}{2}\right\rfloor+1, \\ \left\lfloor\frac{n+1}{2}\right\rfloor, & \text { for } m<\frac{1}{2}\left\lfloor\frac{n}{2}\right\rfloor+1 .\end{cases}
$$

For positive integers $m, n \geq 1$, Christou et al. [2] determined the size bipartite Ramsey numbers of stars $K_{1, m}$ versus $n P_{2}$.

The size multipartite Ramsey numbers of paths P_{n} versus stars was determined only for $n=$ 2,3 by Syafrizal et al. [11] in 2007. Furthermore, Surahmat et al. [9] gave the size tripartite Ramsey numbers of paths P_{n} versus stars, for $n=3,4,5,6$. Lusiani et al. [7] gave the size tripartite Ramsey numbers of paths P_{3} versus a disjoint union of m copies of a star. In this section, we investigate the size tripartite Ramsey numbers of paths P_{n} versus stars, with all $n \geq 2$. Our results complete the previous results given by Syafrizal et al. and Surahmat et al.

Theorem 2.2. For positive integers $n \geq 2, m_{3}\left(K_{1,2}, P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. For $n=2,3$, it is clear that $m_{3}\left(K_{1,2}, P_{n}\right) \geq 1$. To show that $m_{3}\left(K_{1,2}, P_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil$, for $n \geq 4$, let us consider a factorization the graph $K_{\left.3 \times\left(\Gamma \frac{n}{3}\right\rceil-1\right)}=F_{1} \oplus F_{2}$. We choose F_{1} as a matching, then $F_{1} \nsupseteq K_{1,2}$. Since $\left|V\left(K_{3 \times\left(\left\lceil\frac{n}{3}\right\rceil-1\right)}\right)\right|=\left|V\left(F_{2}\right)\right|=3\left(\left\lceil\frac{n}{3}\right\rceil-1\right)<n$, we obtain $F_{2} \nsupseteq P_{n}$.

Now, we show that $m_{3}\left(K_{1,2}, P_{n}\right) \leq\left\lceil\frac{n}{3}\right\rceil$. For $n=2,3$, we know that in any red-blue coloring avoiding a red $K_{1,2}$, there will be a blue P_{2} or a blue P_{3}. Therefore, $m_{3}\left(K_{1,2}, P_{n}\right) \leq 1$, for $n=2,3$. For $n \geq 4$, we consider a factorization $K_{3 \times\left\lceil\frac{n}{3}\right\rceil}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1,2}$, so $\Delta\left(G_{1}\right) \leq 1$. Then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-\left\lceil\frac{n}{3}\right\rceil-\Delta\left(G_{1}\right)=2\left\lceil\frac{n}{3}\right\rceil-1 \geq \frac{3}{2}\left\lceil\frac{n}{3}\right\rceil=\frac{\left|V\left(G_{2}\right)\right|}{2}$. By Theorem 1.1, we have that G_{2} is Hamiltonian which implies $G_{2} \supseteq P_{n}$, for $n \geq 4$.

Theorem 2.3. For positive integer $n \geq 2$,

$$
m_{3}\left(K_{1,3}, P_{n}\right)= \begin{cases}\left\lceil\frac{n}{3}\right\rceil+1, & \text { if } 2 \leq n \leq 6 \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \geq 7\end{cases}
$$

Proof.
To show that $m_{3}\left(K_{1,3}, P_{n}\right) \geq t$, let $t= \begin{cases}2, & \text { if } 2 \leq n \leq 3, \\ 3, & \text { if } 4 \leq n \leq 6, \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \geq 7 .\end{cases}$
We consider a factorization the graph $K_{3 \times(t-1)}=F_{1} \oplus F_{2}$, where F_{1} does not contain $K_{1,3}$. We consider the following three cases.

Case 1. For $2 \leq n \leq 3$.
We have $K_{3 \times(t-1)}=K_{3}$. We can choose $F_{1}=K_{3}$, which implies $F_{1} \nsupseteq K_{1,3}$ and $F_{2} \nsupseteq P_{n}$.
Case 2. For $4 \leq n \leq 6$.
We have $K_{3 \times(t-1)}=K_{3 \times 2}$. We can choose $F_{1}=C_{6}$ and $F_{2}=2 C_{3}$, see Figure 1 . Then, $F_{1} \nsupseteq K_{1,3}$ and the longest path in F_{2} is a P_{3}.

Figure 1. F_{1} is a C_{6} and F_{2} is $2 C_{3}$.

Case 3. For $n \geq 7$.
We have $K_{3 \times(t-1)}=K_{3 \times\left(\left\lceil\frac{n}{3}\right\rceil-1\right)}$. We can choose $F_{1}=C_{3\left(\left\lceil\frac{n}{3}\right\rceil-1\right)}$, then $F_{1} \nsupseteq K_{1,3}$. Since $\left|V\left(K_{3 \times(t-1)}\right)\right|=\left|V\left(F_{2}\right)\right|=3\left(\left\lceil\frac{n}{3}\right\rceil-1\right)<n$, we obtain $F_{2} \nsupseteq P_{n}$ 。

Now, we show that $m_{3}\left(K_{1,3}, P_{n}\right) \leq t$, let $t= \begin{cases}2, & \text { if } 2 \leq n \leq 3, \\ 3, & \text { if } 4 \leq n \leq 9, \\ \left\lceil\frac{n}{3}\right\rceil, & \text { if } n \geq 10 .\end{cases}$
We consider a factorization $K_{3 \times t}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1,3}$, so $\Delta\left(G_{1}\right) \leq 2$. We consider the following three cases.

Case 1. For $2 \leq n \leq 3$.
We have $K_{3 \times t}=K_{3 \times 2}$. Since $\Delta\left(G_{1}\right) \leq 2$, then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=6-2-2=2$, which implies that $G_{2} \supseteq P_{3}$.

Case 2. For $4 \leq n \leq 9$.
We have $K_{3 \times t}=K_{3 \times 3}$. Since $\Delta\left(G_{1}\right) \leq 2$, then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=9-3-2=4$. We will use Theorem 1.2 to show that G_{2} is a Hamiltonian path. So, we will show that G_{2} is a 2-connected graph with no independent set of 4 vertices. Let A, B, C be the three partities of G_{2}. Let $x \neq y$, where x, y be any vertices in G_{2} and $S=N(x) \cap N(y)$. There are two possibilities:

1. Let x and y be in the same partite set. Since $\delta\left(G_{2}\right) \geq 4$, then $S \neq \emptyset$ and $|S| \geq 2$. So, two vertices of S together with x and y form a C_{4}.
2. Let x and y be in the different partite sets, say $x \in A$ and $y \in B$.
(a) $x \sim y$. If $S=\emptyset$, then there exist $c_{1}, c_{2} \in C, c_{1} \neq c_{2}$ such that $x \sim c_{1}$ and $y \sim c_{2}$. Now, since $\delta\left(G_{2}\right) \geq 4, K=N\left(c_{1}\right) \cap N\left(c_{2}\right) \neq \emptyset$, say $b_{2} \in K$. Then $\left\{x, y, c_{1}, c_{2}, b_{2}\right\}$ form a C_{5}. Also, If $S \neq \emptyset$, then x and y will be contained in a C_{3}.
(b) $x \nsim y$. Since $\delta\left(G_{2}\right) \geq 4$, then $|S| \geq 1$ and $S \subseteq C$. If $|S| \geq 2$, then x, y and two vertices of S will create a C_{4}. If $|S|=1$, then $B-\{y\} \subseteq N(x)$ and $|N(y) \cap C|=2$. Let $N(y) \cap C=\left\{c_{1}, c_{2}\right\}$. Since $\delta\left(G_{2}\right) \geq 4$, then $\left|N\left(c_{1}\right) \cap(B-\{y\})\right| \geq 1$. Therefore, select $b_{1} \in B-\{y\}$ such that $c_{1} \sim b_{1}$. Then, $x c_{2} y c_{1} b_{1} x$ is a C_{5}.

Since any two different vertices in G_{2} belongs to a cycle, G_{2} is a 2-connected graph. Now, we show that $\alpha\left(G_{2}\right)=3$. Since G_{2} is a factor of $K_{3 \times 3}, \alpha\left(G_{2}\right) \geq 3$. $\alpha\left(G_{2}\right) \leq 3$, as any independent set of G_{2} can have at most one element from each of the three partite sets. So, we have $\alpha\left(G_{2}\right)=3$. Then, by Theorem 1.2, G_{2} is a Hamiltonian path, which implies $G_{2} \supseteq P_{n}$, for $4 \leq n \leq 9$.

Case 3. For $n \geq 10$.
We have $K_{3 \times t}=K_{3 \times\left\lceil\frac{n}{3}\right\rceil \text {. Since }} \Delta\left(G_{1}\right) \leq 2$, then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=2\left\lceil\frac{n}{3}\right\rceil-2 \geq$ $\frac{3}{2}\left\lceil\frac{n}{3}\right\rceil=\frac{\left|V\left(G_{2}\right)\right|}{2}$. Thus, by Theorem 1.1, G_{2} is Hamiltonian which implies $G_{2} \supseteq P_{n}$, for $n \geq 10$.

Theorem 2.4. For positive integers $4 \leq m \leq \frac{1}{2}\left\lceil\frac{n}{3}\right\rceil+1$ and $n \geq 16, m_{3}\left(K_{1, m}, P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Proof. To show that $m_{3}\left(K_{1, m}, P_{n}\right) \geq\left\lceil\frac{n}{3}\right\rceil$, let us consider a factorization graph $K_{3 \times\left(\left\lceil\frac{n}{3}\right\rceil-1\right)}=$ $F_{1} \oplus F_{2}$, where F_{1} does not contain $K_{1, m}$. We can choose $F_{1}=C_{3\left\lceil\frac{n}{3}\right\rceil-3}$, then $F_{1} \nsupseteq K_{1, m}$. Since $\left|V\left(K_{3 \times\left(\left\lceil\frac{n}{3}\right\rceil-1\right)}\right)\right|=\left|V\left(F_{2}\right)\right|=3\left\lceil\frac{n}{3}\right\rceil-3<n$, we obtain $F_{2} \nsupseteq P_{n}$.

Now, we show that $m_{3}\left(K_{1, m}, P_{n}\right) \leq\left\lceil\frac{n}{3}\right\rceil$. We consider a factorization $K_{3 \times\left\lceil\frac{n}{3}\right\rceil}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1, m}$, so $\Delta\left(G_{1}\right) \leq m-1$. Then, $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-\left\lceil\frac{n}{3}\right\rceil-\Delta\left(G_{1}\right)=$ $2\left\lceil\frac{n}{3}\right\rceil-(m-1)$. Since $\delta\left(G_{2}\right) \geq 2\left\lceil\frac{n}{3}\right\rceil-(m-1)$ and $2(m-1) \leq\left\lceil\frac{n}{3}\right\rceil$, then $\delta\left(G_{2}\right) \geq 2\left\lceil\frac{n}{3}\right\rceil-\frac{1}{2}\left\lceil\frac{n}{3}\right\rceil=$ $\frac{3}{2}\left\lceil\frac{n}{3}\right\rceil=\frac{\left|V\left(G_{2}\right)\right|}{2}$. Then, by Theorem 1.1, G_{2} is Hamiltonian which implies $G_{2} \supseteq P_{n}$.

3. Stars versus Cycles

The size multipartite Ramsey numbers for paths versus cycles of three or four vertices have been showed by Syafrizal et al. [12]. Recently, Lusiani et al. [6] showed the size multipartite Ramsey numbers for stars versus cycles. Now, we investigate the size bipartite Ramsey numbers for stars versus cycles. The research is inspired by the work of Hattingh and Henning on the size bipartite Ramsey numbers for stars versus paths. It seems that $m_{2}\left(K_{1, m}, C_{n}\right)$ is related to $m_{2}\left(K_{1, m}, P_{n}\right)$. However, since a complete bipartite graph does not contain odd cycles, then it is clear that $m_{2}\left(K_{1, m}, C_{n}\right)=\infty$. Now, we only consider $m_{2}\left(K_{1, m}, C_{n}\right)$, where n is even. To show this relation, in Theorem 3.1, we obtain the exact value of $m_{2}\left(K_{1, m}, C_{n}\right)$ for certain values of n.

Theorem 3.1. Let $m \geq 2$ and $n \geq 2 m$, where n is even. Then,

$$
m_{2}\left(K_{1, m}, C_{n}\right)= \begin{cases}2 m-1, & \text { for } 2 m \leq n \leq 4 m-4 \\ \left\lceil\frac{n}{2}\right\rceil, & \text { for } 4 m-2 \leq n\end{cases}
$$

Proof. Let $t= \begin{cases}2 m-1, & \text { for } 2 m \leq n \leq 4 m-4, \\ \left\lceil\frac{n}{2}\right\rceil, & \text { for } 4 m-2 \leq n .\end{cases}$

To show that $m_{2}\left(K_{1, m}, C_{n}\right) \geq t$, let us consider a factorization the graph $K_{2 \times(t-1)}=F_{1} \oplus F_{2}$, such that F_{1} does not contain $K_{1, m}$. Then, $\Delta\left(F_{1}\right) \leq(m-1)$. We consider the following two cases.

Case 1. For $2 m \leq n \leq 4 m-4$.
We have $K_{2 \times(t-1)}=K_{2 \times(2 m-2)}$. We can choose $F_{1}=2 K_{2 \times(m-1)}$. The complement of F_{1} relative to $K_{2 \times(2 m-2)}$ is $2 K_{2 \times(m-1)}$. So, we get $F_{2}=2 K_{2 \times(m-1)}$, which implies $F_{1} \nsupseteq K_{1, m}$ and $F_{2} \nsupseteq C_{n}$ for $2 m \leq n \leq 4 m-4$.

Case 2. For $4 m-2 \leq n$.
We have $K_{2 \times(t-1)}=K_{2 \times\left(\left\lceil\frac{n}{2}\right\rceil-1\right)}$. If we choose $F_{2}=K_{2 \times\left(\left\lceil\frac{n}{2}\right\rceil-1\right)}$, then F_{1} is a null graph. So, $F_{1} \nsupseteq K_{1, m}$. Since $\left|V\left(K_{2 \times(t-1)}\right)\right|=\left|V\left(F_{2}\right)\right|=2\left(\left\lceil\frac{n}{2}\right\rceil-1\right)<n$, we obtain $F_{2} \nsupseteq C_{n}$.

Now, we show that $m_{2}\left(K_{1, m}, C_{n}\right) \leq t$. We consider a factorization $K_{2 \times t}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1, m}$, so $\Delta\left(G_{1}\right) \leq(m-1)$. We consider the following two cases.

Case 1. For $2 m \leq n \leq 4 m-4$.
We have $K_{2 \times t}=K_{2 \times(2 m-1)}$. Since $\Delta\left(G_{1}\right) \leq(m-1)$, then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=$ $2 m-1-(m-1)=m$. Then, by Theorem 1.4, G_{2} is bipancyclic, which implies $G_{2} \supseteq C_{n}$, for $2 m \leq n \leq 4 m-4$.

Case 2. For $4 m-2 \leq n$.
We have $K_{2 \times t}=K_{2 \times\left(\left\lceil\frac{n}{2}\right\rceil\right)}$. Since $\Delta\left(G_{1}\right) \leq(m-1)$, then $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=$ $\left\lceil\frac{n}{2}\right\rceil-(m-1) \geq \frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil+1\right)$, for $n \geq 4 m-2$. Thus, by Theorem 1.3, G_{2} is bipancyclic, which implies $G_{2} \supseteq C_{n}$, for $n \geq 4 m-2$.

In the next two theorem, we consider $m_{2}\left(K_{1, m}, C_{n}\right)$ for certain values of m and n which are not included in Theorem 3.1. In particular, we prove that $m_{2}\left(K_{1,3}, C_{4}\right)=5$ in Theorem 3.2 and $m_{2}\left(K_{1,4}, C_{4}\right)=6$ in Theorem 3.3.

Theorem 3.2. $m_{2}\left(K_{1,3}, C_{4}\right)=5$.

Figure 2. F_{1} is a C_{8} and F_{2} does not contain a C_{4}.

Proof. To show that $m_{2}\left(K_{1,3}, C_{4}\right) \geq 5$, let us consider a factorization the graph $K_{2 \times 4}=F_{1} \oplus F_{2}$, where F_{1} does not contain $K_{1,3}$. If we choose $F_{1}=C_{8}$, then F_{2} does not contain a C_{4}, as shown in Figure 2. This implies that $F_{1} \nsupseteq K_{1,3}$ and $F_{2} \nsupseteq C_{4}$.

Now, we show that $m_{2}\left(K_{1,3}, C_{4}\right) \leq 5$. We consider a factorization $K_{2 \times 5}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1,3}$, so $\Delta\left(G_{1}\right) \leq 2$. Then, $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=10-5-2=3$. Thus, by Theorem 1.3, G_{2} is bipancyclic, which implies $G_{2} \supseteq C_{4}$.

Theorem 3.3. $m_{2}\left(K_{1,4}, C_{4}\right)=6$.
Proof. To show that $m_{2}\left(K_{1,4}, C_{4}\right) \geq 6$, let us consider a factorization the graph $K_{2 \times 5}=F_{1} \oplus F_{2}$, where F_{1} does not contain $K_{1,4}$. Then, $\Delta\left(F_{1}\right) \leq 3$ and $\delta\left(F_{2}\right) \geq\left|V\left(F_{2}\right)\right|-t-\Delta\left(F_{1}\right)=10-5-3=$ 2. We can choose $F_{2}=C_{10}$. So, we get $F_{2} \nsupseteq C_{4}$. Now, we show that $m_{2}\left(K_{1,4}, C_{4}\right) \leq 6$. We consider a factorization $K_{2 \times 6}=G_{1} \oplus G_{2}$ such that G_{1} does not contain $K_{1,4}$, so $\Delta\left(G_{1}\right) \leq 3$. Then, $\delta\left(G_{2}\right) \geq\left|V\left(G_{2}\right)\right|-t-\Delta\left(G_{1}\right)=12-6-3=3$. Let A and B be the two partitie sets of $K_{2 \times 6}$. Let $a_{1} \in A$ be adjacent to $b_{i} \in B, i \in\{1,2,3\}$ in G_{2}. Since $\delta\left(G_{2}\right) \geq 3$, then each b_{i} is adjacent to at least two vertices in $A-\left\{a_{1}\right\}$. By the Pigeonhole Principle, there exists at least one vertex in $A-\left\{a_{1}\right\}$ adjacent to two vertices in $\left\{b_{1}, b_{2}, b_{3}\right\}$. So, we get C_{4} in G_{2}.

Acknowledgment

This research was supported by Research Grant: '"Program Riset dan Inovasi KK-ITB", Institut Teknologi Bandung, Ministry of Research, Technology and Higher Education, Indonesia.

References

[1] A.P. Burger and J.H. van Vuuren, Ramsey numbers in complete balanced multipartite graphs. Part II: Size Number. Discrete Math. 283 (2004), 45-49.
[2] M. Christou, C.S. Iliopoulos, and M. Miller, Bipartite Ramsey numbers involving stars, stripes and trees. Electron. J. Graph Theory 1 (2) (2013), 89-99.
[3] V. Chvátal and P. Erdös, A note on Hamilton circuits, Discrete Math. 2 (1972), 111-113.
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2 (1952), 69-81.
[5] J.H. Hattingh and M.A. Henning, Star-Path bipartite Ramsey numbers, Discrete Math. 185 (1998), 255-258.
[6] A. Lusiani, Syafrizal Sy, E.T. Baskoro, and C. Jayawardene, On size multipartite Ramsey numbers for stars versus cycles, Procedia Comput. Sci. 74 (2015), 27-31.
[7] A. Lusiani, E.T. Baskoro, and S.W. Saputro, On size tripartite Ramsey numbers of P_{3} versus $m K_{1, n}$, AIP Conf. Proc. 1707020010 (2016); doi:10.1063/1.4940811.
[8] E. Schmeichel and J. Mitchen, Bipartite graph with cycles of all even lengths, J. Graph Theory 6 (1982), 429-439.
[9] Surahmat and Syafrizal Sy, Star-path size multipartite Ramsey numbers, Applied Math. Sciences 8 (75) (2014), 3733-3736.
[10] Syafrizal Sy, E.T. Baskoro, and S. Uttunggadewa, The size multipartite Ramsey numbers for paths, J. Combin. Math. Combin. Comput. 55 (2005), 103-107.
[11] Syafrizal Sy, E.T. Baskoro, and S. Uttunggadewa, The size multipartite Ramsey numbers for small paths versus other graphs, Far East J. Appl. Math. 28 (1) (2007), 131-138.
[12] Syafrizal Sy, On size multipartite Ramsey numbers for paths versus cycle of three or four vertices, Far East J. Appl. Math. 44 (2) (2010), 109-116.

[^0]: ${ }^{1}$ Permanent Affiliation: Politeknik Negeri Bandung, Indonesia.
 Received: 15 November 2016, Revised: 14 January 2017, Accepted: 10 February 2017.

