Electronic Journal of Graph Theory and Applications

Some new graceful generalized classes of diameter six trees

Debdas Mishra ${ }^{\text {a }}$, Sushant Kumar Rout ${ }^{\text {b }}$, Purna Chandra Nayak ${ }^{\text {c }}$
${ }^{a}$ C. V. Raman College of Engineering, Bhubaneswar, India
${ }^{b}$ College of Engineering and Technology, Bhubaneswar, India
${ }^{c}$ Bhadrak Autonomous College, Bhadrak, India

debdasmishra@gmail.com, sushant9027@gmail.com, debmaths@yahoo.com

Abstract

Here we denote a diameter six tree by $\left(c ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$, where c is the center of the tree; $a_{i}, i=1,2, \ldots, m, b_{j}, j=1,2, \ldots, n$, and $c_{k}, k=1,2, \ldots, r$ are the vertices of the tree adjacent to c; each a_{i} is the center of a diameter four tree, each b_{j} is the center of a star, and each c_{k} is a pendant vertex. Here we give graceful labelings to some new classes of diameter six trees $\left(c ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ in which a diameter four tree may contain any combination of branches with the total number of branches odd though with some conditions on the number of odd, even, and pendant branches. Here by a branch we mean a star, i.e. we call a star an odd branch if its center has an odd degree, an even branch if its center has an even degree, and a pendant branch if it is a pendant vertex.


```
Keywords: graceful labeling, diameter six tree, odd and even branches, component moving transformation
Mathematics Subject Classification : 05C78
DOI:10.5614/ejgta.2017.5.1.10
```


1. Introduction

Definition 1.1. [13] A graceful labeling of a (p, q) graph G is an injection $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ such that, when each edge uv of G is assigned the label $|f(u)-f(v)|$, the resulting edge labels (or weights) are distinct from the set $\{1,2,3, \ldots, q\}$. A graph that admits a graceful labeling is said to be graceful. As for a tree $q=p-1, f$ is also onto and hence bijective.

Received: 8 September 2014, Revised: 14 January 2017, Accepted: 26 January 2017.

Definition 1.2. A diameter six tree is a tree which has a representation of the form ($c ; a_{1}, a_{2}, \ldots, a_{m}$; $\left.b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$, where c is the center of the tree; $a_{i}, i=1,2, \ldots, m, b_{j}, j=1,2, \ldots, n$, and $c_{k}, k=1,2, \ldots, r$ are the vertices of the tree adjacent to c; each a_{i} is the center of a diameter four tree, each b_{j} is the center of a star, and each c_{k} is a pendant vertex. We observe that in a diameter six tree with above representation $m \geq 2$, i.e. there should be at least two (vertices) a_{i} 's adjacent to c which are the centers of diameter four trees. Here we use the notation D_{6} to denote a diameter six tree. A combination of branches incident on any $a_{i}, 0 \leq i \leq m$, can be represented by a triple (x, y, z), where x, y, and z represent the number of odd, even, and pendant branches, respectively, incident on a_{i}. Here we use the symbols e and o to represent a non-zero even number and an odd number, respectively. For example: $(e, 0, o)$ means an even number of odd branches, no even branch, and an odd number of pendant branches. If in a triple e or o appears more than once then it does not mean that the corresponding branches are equal in number, for example, (e, e, o) does not mean that the number of odd branches is equal to the number of even branches.

In the literature $[3,4,5,6,12]$ we find that all trees up to diameter five are graceful. As far as diameter six trees are concerned, only banana trees are graceful $[1,2,3,4,6,7,8,14,15,12,16]$. From literature [2] a banana tree is a tree obtained by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars). Chen et al. [2] conjectured that banana trees are graceful. Bhat-Nayak and Deshmukh [1], Murugan and Arumugam [8] and Vilfred [16] gave graceful labelings to different classes of banana trees. Sethuraman and Jesintha $[6,7,14,15]$) proved that all banana trees and extended banana trees (graphs obtained by joining a vertex to one leaf of each of any number of stars by a path of length of at least two) are graceful. In this paper we give graceful labelings to some new classes of diameter six trees $\left(a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ with each $a_{i}, i=1,2, \ldots, m_{1}, m_{1} \leq m$, is attached to $(o, 0,0)$. In the diameter six trees with the above representation a diameter four tree may contain any combination of branches with the total number of branches odd though with some conditions on the number of odd, even, and pendant branches.

2. Preliminaries

Now we state some existing terminologies results borrowed from $[5,9,10,11]$ to prove our main result.

Definition 2.1. For an edge $e=\{u, v\}$ of a tree T, we define $u(T)$ as that connected component of $T-e$ which contains the vertex u. Here we say $u(T)$ is a component incident on the vertex v. If a and b are vertices of a tree $T, u(T)$ is a component incident on a, and $b \notin u(T)$ then deleting the edge $\{a, u\}$ from T and making b and u adjacent is termed as the component $u(T)$ has been transferred or moved from a to b. In this paper by the label of the component " $u(T)$ " we mean the label of the vertex u. Let T be a tree and a and b be two vertices of T. By $a \rightarrow b$ transfer we mean that some components from a have been moved to b. If we consider successive transfers $a_{1} \rightarrow a_{2}, a_{2} \rightarrow a_{3}, a_{3} \rightarrow a_{4}, \ldots$ we simply write $a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow a_{4} \ldots$ transfer. In the transfer $a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{n}$, each vertex $a_{i}, i=1,2, \ldots, n-1$ is called a vertex of transfer.

Lemma 2.1. [5] Let f be a graceful labeling of a tree T; let a and be two vertices of T; let $u(T)$ and $v(T)$ be two components incident on a where $b \notin u(T) \cup v(T)$. Then the following hold:
(i) if $f(u)+f(v)=f(a)+f(b)$ then the tree T^{*} obtained from T by moving the components $u(T)$ and $v(T)$ from a to b is also graceful.
(ii) if $2 f(u)=f(a)+f(b)$ then the tree $T^{* *}$ obtained from T by moving the component $u(T)$ from a to b is also graceful.

Definition 2.2. Let T be a labelled tree with a labeling f. We consider the vertices of T whose labels form the sequence $(a, b, a-1, b+1, a-2, b+2)$ (respectively, $(a, b, a+1, b-1, a+2, b-2)$). Let a be adjacent to some vertices having labels different from the above labels. The $a \longrightarrow b$ transfer is called a transfer of the first type if the labels of the transferred components constitute a set of consecutive integers. The $a \longrightarrow b$ transfer is called a transfer of the second type if the labels of the transferred components can be divided into two segments, where each segment is a set of consecutive integers. A sequence of eight transfers of the first type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a \rightarrow$ $b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2$ (respectively, $a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow a \rightarrow b \rightarrow a+1 \rightarrow b-1 \rightarrow$ $a+2$), is called a backward double 8 transfer of the first type or BD8TF a to a -2 (respectively, a to $a+2$). A sequence of five transfers of the first type $a \rightarrow b+1 \rightarrow a-1 \rightarrow b \rightarrow a-2 \rightarrow b+2$ (respectively, $a \rightarrow b-1 \rightarrow a+1 \rightarrow b \rightarrow a+2 \rightarrow b-2$), is called a 5 -transfer of the first type or in brief 5TF a to $b+2$ (respectively, a to $b-2$). A sequence of four transfers of the first type $a \rightarrow b+1 \rightarrow a-1 \rightarrow b+1 \rightarrow a-2$ (respectively, $a \rightarrow b-1 \rightarrow a+1 \rightarrow b-1 \rightarrow a+2$), is called a 1 - jump transfer of the first type or in brief 1JTF a to $a-2$ (respectively, a to $a+2$). A sequence of two transfers of the first type $a \rightarrow b+1 \rightarrow a-2$ (respectively, $a \rightarrow b-1 \rightarrow a+2$), is called a $\mathbf{2}$ - jump transfer of the first type or in brief 2JTF a to $a-2$ (respectively, a to $a+2$). A sequence of two transfers of the first type $a \rightarrow b+2 \rightarrow a-3$ (respectively, $a \rightarrow b-2 \rightarrow a+3$), is called a 4 -jump transfer of the first type or in brief 4JTF a to $a-3$ (respectively, a to $a+3$).

(c)

(d)

(e)

(f)

(g)

(h)

Figure 1. The graceful trees in (b), (c), d), (e), (f), (g), and (h) are obtained from the graceful tree in (a) by applying transfers of the first type $22 \rightarrow 1$, the transfer of second type $22 \rightarrow 2$, BD8TF 22 to 20 , 5 TF 22 to 3,1 JTF 22 to 20,2 JTF 22 to 20 , and 4 JTF 22 to 18 , respectively.

Some new graceful generalized classes of diameter six trees $\quad \mid \quad D$. Mishra et al.

Theorem 2.1. [9, 10, 11] In a graceful labeling f of a graceful tree T, let a and b be the labels of two vertices. Let a be attached to a set A of vertices (or components) having labels $n, n+1, n+$ $2, \ldots, n+p$ (different from the above vertex labels), which satisfy $(n+1+i)+(n+p-i)=$ $a+b, i \geq 0$ (respectively, $(n+i)+(n+p-1-i)=a+b, i \geq 0)$. Then the following hold.
(a) By making a transfer $a \rightarrow b$ of first type we can keep an odd number of components at a from the set A and move the rest to b, and the resultant tree thus formed will be graceful.
(b) If A contains an even number of elements, then by making a sequence of transfers of the second type $a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow a-2 \rightarrow b+2 \rightarrow \ldots$ (respectively, $a \rightarrow b \rightarrow$ $a+1 \rightarrow b-1 \rightarrow a+2 \rightarrow b-2 \rightarrow \ldots$), an even number of elements from A can be kept at each vertex of the transfer, and the resultant tree thus formed is graceful.
(c) By a BD8TF a to $b+1$ (respectively, $b-1$), we can keep an even number of elements from A at $a, b, a-1$, and $b+1$ (respectively, $a, b, a+1$, and $b-1$), and move the rest to $a-2$ (respectively, $a+2$). By a 5TF a to $a-2$ (respectively, $a+2$), we can keep an even number of components at a and $a-2$ (respectively, a and $a+2$) and an odd number of components at the remaining vertices of the transfer and move the rest to $b+2$ (respectively, $b-2$). By a 1JTF a to $b+1$ (respectively, $b-1$), we can keep an even number of elements from A at a, $a-1$, and $b+1$ (respectively, $a, a+1$, and $b-1$) and no component at b, and move the rest to $a-2$ (respectively, $a+2$). By a 2JTF a to $b+1$ (respectively, $b-1$), we can keep an even number of components at a and $b+1$ (respectively, $b-1$) and no component at b and $a-1$ (respectively, $a+1$), and move the rest to $a-2$ (respectively, $a+2$). By making a 4JTF a to $b+2$ (respectively, $b-2$), we can keep an odd number (≥ 3) of components at a and $b+2$ (respectively, $b-2$) and no component at $b, a-1, b+1$, and $a-2$ (respectively, $b, a+1$, $b-1$, and $a+2$), and move the rest to $a-3$ (respectively, $a+3$). The resultant tree formed in each of the above cases is graceful.
(d) Consider the transfer $R: a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow \ldots \rightarrow z$ (respectively, $a \rightarrow b \rightarrow$ $a+1 \rightarrow b-1 \rightarrow \ldots \rightarrow z$), with $z=a-p_{1}$ or $b+p_{2}$ (respectively, $a+r_{1}$ or $b-r_{2}$), such that R is partitioned as $R: T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow \ldots \rightarrow T_{n}$, where each $T_{i}, 1 \leq i \leq n$, is either a transfer of the first type or any of the derived transfers. Construct a tree T^{*} from T by making the transfer R part wise, i.e. first the transfer T_{1}, then T_{2} and so on. The tree T^{*} is graceful.
(e) Consider the transfer $R^{\prime}: a \rightarrow b \rightarrow a-1 \rightarrow b+1 \rightarrow \ldots \rightarrow \ldots$ (respectively, $a \rightarrow b \rightarrow$ $a+1 \rightarrow b-1 \rightarrow \ldots \rightarrow \ldots)$, such that R^{\prime} is partitioned as $R^{\prime}: T_{1}^{\prime} \rightarrow T^{\prime}{ }_{2}$, where T_{1}^{\prime} is sequence of transfers consisting of the transfers of the first type and the derived transfers and T_{2}^{\prime} is a sequence of transfer of the second type. The tree $T^{* *}$ obtained from T by making the transfer R^{\prime} is graceful.

Lemma 2.2. [5] If g is a graceful labeling of a tree T with n edges then the labeling g_{n} defined as $g_{n}(x)=n-g(x)$, for all $x \in V(T)$, called the inverse transformation of g is also a graceful labeling of T.

3. Results

Construction 3.1. We construct a diameter six tree $D_{6}=\left(c ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right)$ with degree of each a_{i} and b_{j} an odd number. Suppose that o_{i}, e_{i}, and p_{i} are the number of odd, even, and pendant branches incident on the center $a_{i}, 1 \leq j \leq m$.
(1) The vertex a_{i} may be attached to one of the following combinations with the conditions specified.
(a) $(o, 0,0)$.
(b) (o, e, e) or $(o, e, 0)$ with either $e_{i}-p_{i} \equiv 0(\bmod 4)$ or $o_{i} \geq 3$.
(c) (o, o, o) with $e_{i} \geq 3$ and either $e_{i}-p_{i} \equiv 2(\bmod 4)$ or $o_{i} \geq 3$ and $e_{i}-p_{i} \geq 4$.
(d) $(o, 0, e)$ or (o, e, e) with $e_{i} \equiv 0(\bmod 4), p_{i} \equiv 0(\bmod 4), o_{i} \geq \frac{p_{i}}{2}+2$, and at least $\frac{p_{i}}{2}$ odd branches contain 3 or more pendant vertices.
(2) The combinations of branches incident on a_{i} and a_{i+1} may be one of the following.
(a) The vertex a_{i} is attached to (e, e, o) or $(0, e, o)$ (respectively, (e, o, e)) or $(0, o, e)$ and a_{i+1} is attached to (e, o, e) or $(0, o, e)$ (respectively, (e, e, o))or $(0, e, o)$ with the conditions $a_{i} \geq p_{i}+1$, $a_{i+1} \geq p_{i+1}+1$, and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 2(\bmod 4)$.
(b) Both the vertices a_{i} and a_{i+1} are attached to (e, e, o) or $(0, e, o)$ with the conditions $e_{i} \geq p_{i}+1$, $e_{i+1} \geq p_{i+1}+1,\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 0(\bmod 4)$, and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \geq 4$.
(c) Both the vertices a_{i} and a_{i+1} are attached to (e, o, e) or $(0, o, e)$ with the conditions $e_{i} \geq p_{i}-1$, $e_{i+1} \geq p_{i+1}-1,\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 0(\bmod 4)$, and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \geq 0$.
(d) The vertices a_{i} and a_{i+1} are attached to either $(e, o, 0)$ or $(0, o, 0)$ with $\left[e_{i}+e_{i+1}\right] \equiv 0(\bmod 4)$.
(e) The vertex a_{i} is attached to either $(0, o, 0)$ or $(e, o, 0)$ (respectively, $(0, o, e)$ or $\left.(e, o, e)\right)$ and the vertex a_{i+1} is attached to either $(0, o, e)$ or (e, o, e) (respectively, $(0, o, 0)$ or $(e, o, 0)$) with $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 0(\bmod 4)$ and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \geq 4$.
(f) The vertex a_{i} is attached to either $(0, o, 0)$ or $(e, o, 0)$ (respectively, $(0, e, o)$ or $\left.(e, e, o)\right)$ and the vertex a_{i+1} is attached to either $(0, e, o)$ or (e, e, o) (respectively, $(0, o, 0)$ or $(e, o, 0)$) with $e_{i} \geq p_{i}+3, e_{i+1} \geq p_{i+1}+3$, and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 2(\bmod 4)$
(g) The vertices a_{i} and a_{i+1} are attached to either $(e, 0, o)$ or (e, e, o) with $p_{i}+p_{i+1} \equiv 0(\bmod 4)$, $e_{i} \equiv 0(\bmod 4), e_{i+1} \equiv 0(\bmod 4), o_{r} \geq n_{r}+2, r=i, i+1$, and at least n_{r} odd branches incident on a_{r} contain 3 or more pendant vertices, where $n_{r}=\frac{p_{r}+1}{2}$ if $p_{r} \equiv 1(\bmod 4)$ and $\frac{p_{r}-1}{2}$ if $p_{r} \equiv 3(\bmod 4)$.
(h) Both the vertices a_{i} and a_{i+1} are attached to (e, o, e) with $e_{i}+e_{i+1} \equiv 0(\bmod 4), o_{r} \geq \frac{p_{r}}{2}, r=$ $i, i+1$, and at least $\frac{p_{r}}{2}$ odd branches incident on a_{r} contain 3 or more pendant vertices.
(i) The vertex a_{i} is attached to $(o, e, 0)$ (respectively, (o, e, e)) and the vertex a_{i+1} is attached to $(o, e, e)($ respectively, $(o, e, 0))$ with $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 0(\bmod 4)$ and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \geq 4$.
(j) The vertex a_{i} is attached to $(o, e, 0)$ or (o, e, e) (respectively, (o, o, o)) and the vertex a_{i+1} is attached to (o, o, o) (respectively, $(o, e, 0))$ or (o, e, e) with $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \equiv 2(\bmod 4)$ and $\left[e_{i}+e_{i+1}-p_{i}-p_{i+1}\right] \geq 2$.
(k) Both the vertices a_{i} and a_{i+1} are attached to (o, o, o) or (o, e, e) with one of the following conditions:
(I) $\left[e_{r}-p_{r}\right] \equiv 0(\bmod 4)$, and $\left[e_{r}-p_{r}\right] \geq 0$, for $r=i, i+1$.
(II) $\left[e_{r}-p_{r}\right] \equiv 2(\bmod 4)$, and $\left[e_{r}-p_{r}\right] \geq 2$, for $r=i, i+1$.
(III) $\left[e_{i}-p_{i}\right] \equiv 0(\bmod 4),\left[e_{i+1}-p_{i+1}\right] \equiv 2(\bmod 4),\left[e_{i}-p_{i}\right] \geq 0,\left[e_{i+1}-p_{i+1}\right] \geq 2, o_{i+1} \geq 3$.
(IV) $\left[e_{i}-p_{i}\right] \equiv 2(\bmod 4),\left[e_{i+1}-p_{i+1}\right] \equiv 0(\bmod 4),\left[e_{i}-p_{i}\right] \geq 2,\left[e_{i+1}-p_{i+1}\right] \geq 0, o_{i} \geq 3$.
(l) Both the vertices a_{i} and a_{i+1} are attached to (o, e, e) with $e_{i}+e_{i+1} \equiv 0(\bmod 4)$, and for $r=i, i+1, p_{r} \equiv 0(\bmod 4), o_{r} \geq \frac{p_{r}}{2}+1$ and at least $\frac{p_{r}}{2}$ odd branches incident on a_{r} contains 3 or more pendant vertices.

Example 3.1. The diameter six tree $D_{6}\left(c ; a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} ; b_{1}, b_{2}, b_{3} ; c_{1}, c_{2}, c_{3}\right)$ in Figure 2 is of the type in Construction 3.1. Here $o_{1}=3, e_{1}=0, p_{1}=0 ; o_{2}=2, e_{2}=2, p_{2}=1 ; o_{3}=0, e_{3}=$ $3, p_{3}=2 ; o_{4}=1, e_{4}=1, p_{4}=1 ; o_{5}=1, e_{5}=1, p_{5}=1 ; o_{6}=3, e_{6}=4, p_{6}=4$; Thus, a_{1} is attached to $(o, 0,0), a_{2}$ is attached to $(e, e, o), a_{3}$ is attached to $(0, o, e), a_{4}$ is attached to (o, o, o), a_{5} is attached to (o, o, o), and a_{6} is attached to (o, e, e).

Figure 2. A diameter six tree of the type in Construction 3.1

Theorem 3.1. The diameter six tree D_{6} in Construction 3.1 is graceful.
Proof.
Case - I. Let $m+n$ be odd. Let $\left|E\left(D_{6}\right)\right|=q$ and $\operatorname{deg}\left(a_{0}\right)=m+n=2 k+1$. Suppose that for $i=1,2, \ldots, m, o_{i}+e_{i}+p_{i}=\operatorname{deg}\left(a_{i}\right)-1=2 \lambda_{i}+1$. We proceed as per the following steps to get a graceful labeling of D_{6}.

1. Remove the pendant vertices adjacent to c and represent the new graceful tree by $D_{6}^{(1)}$. Consider the graceful tree G as represented in Figure 3.

Figure 3. The graceful tree G.
2. Let $A=\{k+1, k+2, \ldots, q-k-r-1\}$. Observe that $(k+i)+(q-r-k-i)=q-r$. Designate the vertices adjacent to a_{0}, i.e. $a_{i}, i=1,2, \ldots, m, b_{j}, j=1,2, \ldots, n$ as:

$$
a_{i}=\left\{\begin{array}{l}
q-r-\frac{i-1}{2} \text { if } i \text { is odd } \\
\frac{i}{2} \\
\text { if } i \text { is even }
\end{array} \text { and } b_{j}= \begin{cases}\left\{\begin{array}{l}
\frac{q-r-\frac{m+j-1}{2}}{\frac{m+j}{2}} \text { if } j \text { is odd }
\end{array} \text { if } m\right. \text { is even } \\
\left\{\begin{array}{ll}
\frac{m+j}{2} & \text { if } j \text { is odd } \\
q-r-\frac{m+j-1}{2} & \text { if } j \text { is even }
\end{array} \text { if } m\right. \text { is odd }\end{cases}\right.
$$

Let A be the set of all pendant vertices adjacent to $a_{1}=q-r$ in G. The set A can be written as $A=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$, where for $1 \leq i \leq s=2 \sum_{i=1}^{m}\left(2 \lambda_{i}+1\right)$,

$$
z_{i}=\left\{\begin{array}{l}
q-r-k-\frac{i}{2} \text { if } i \text { is even } \\
k+\frac{i+1}{2} \quad \text { if } i \text { is odd }
\end{array}\right.
$$

3. Consider the sequence of transfer $T_{1}: a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow \ldots \rightarrow a_{m} \rightarrow b_{1} \rightarrow \ldots \rightarrow b_{n} \rightarrow z_{1}$, i.e. $q-r \rightarrow 1 \rightarrow q-r-1 \rightarrow 2 \rightarrow \ldots \rightarrow k \rightarrow q-r-k+1 \rightarrow k \rightarrow q-r-k \rightarrow k+1$ with each transfer is a transfer of first type of the vertex "labels in set A ". Observe that the transfer T_{1} and the set A satisfy the hypothesis of Theorem 2.1. Carry out the transfer T_{1} and keep $2 \lambda_{i}+1$ elements of A at the vertices a_{i} and a desired odd number of vertices at each vertex b_{j}. Let A_{1} be the set of vertices of A that have come to the vertex $k+1$. Let the resultant graceful tree thus formed be G_{1}. 4. Consider the transfer $T_{2}: z_{1} \rightarrow z_{2} \rightarrow z_{3} \rightarrow z_{4} \ldots \rightarrow z_{s}$, where $s=\sum_{i=1}^{m}\left[2 \lambda_{j}+1\right]$.

The manner in which we have moved the vertices of A in step 3 , we notice that the first $2 \lambda_{1}+1$ vertices in T_{2} are incident on a_{1}, the next $2 \lambda_{2}+1$ vertices in T_{2} are incident on a_{2}, and so on. Further, we observe that the set A_{1} and the vertices z_{1} and z_{2} satisfy the hypothesis of Lemma 2.1. We partition the transfer $T_{2}: T_{2}^{(1)} \rightarrow T_{2}^{(2)} \rightarrow T_{2}^{(3)} \rightarrow \ldots \rightarrow T_{2}^{(m)}$ and carry out the transfer T_{3} by successively carrying out the transfers $T_{2}^{(1)}, T_{2}^{(2)}, \ldots, T_{2}^{(m)}$ in order. Each transfer $T_{2}^{(i)}, i=1,2, \ldots, m$ consists of sequence of transfers of the first type and one or more of the derived transfers. Here the transfer $T_{2}^{(i)}: a_{s_{i-1}+1} \rightarrow a_{s_{i-1}+2} \rightarrow \ldots \rightarrow a_{s_{i}} \rightarrow a_{s_{i}+1}$, where for $i=1,2, \ldots, m, s_{i}=\sum_{j=1}^{i}\left(2 \lambda_{j}+1\right)$ and the vertices $a_{s_{i-1}+1}, a_{s_{i-1}+2}, \ldots, a_{s_{i}}$ are incident on the path a_{i}.

We start with the transfer $T_{2}^{(1)}$ or $T_{2}^{(1)} \rightarrow T_{2}^{(2)}$ for the cases (1) and (2), respectively.

Case (1): Let a_{1} be attached to one of the combinations in (1). Here we carry out the transfer $T_{2}^{(1)}: z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow z_{2 \lambda_{1}+1}$.
Case (a): Here $T_{2}^{(1)}$ consists of $2 \lambda_{1}+1$ successive transfers of the first kind.
Case (b): If $e_{1}-p_{1} \equiv 0(\bmod 4)$, then $T_{2}^{(1)}$ consists of $\frac{e_{1}}{4}$ successive BD8TF followed by the o_{1} successive transfers of the first kind. If $e_{1}-p_{1} \equiv 2(\bmod 4)$ then $o_{1} \geq 3$ and as such $T_{2}^{(1)}$ consists of one 5 TF , followed by $\frac{e_{1}-2}{4}$ successive BD8TF, and finally $o_{1}-3$ successive transfers of the first kind.
Case (c): If $e_{1}-p_{1} \equiv 2(\bmod 4)$ then $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{p_{1}}{2}$ successive 2 JTF , followed by $\frac{e_{1}-p_{1}-2}{4}$ successive BD8TF, finally one 1 JTF . If $e_{1}-p_{1} \equiv 0(\bmod 4)$ then $o_{1} \geq 3$, and $T_{2}^{(1)}$ consists of one 5TF, followed by $o_{1}-3$ successive transfers of the first type, followed by $\frac{p_{1}}{2}$ successive 2JTF, followed by $\frac{e_{1}-p_{1}-4}{4}$ successive BD8TF, finally one 1JTF.
Case (d): In this case $T_{3}^{(1)}$ consists of $\frac{e_{1}}{4}$ successive BD8TF, followed by $\frac{p_{1}}{4}$ successive 4 JTF , and finally $o_{1}-\frac{p_{1}}{2}$ successive transfers of the first kind. Case (2): Suppose a_{1} and a_{2} are attached to one of the combinations in (2). Here we carry out the transfer $T_{2}^{(1)} \rightarrow T_{2}^{(2)}: z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow$ $z_{2\left(\lambda_{1}+\lambda_{2}+1\right)}$.
Case (a): Let $\left[\left(e_{1}+e_{2}\right)-\left(p_{1}+p_{2}\right)\right]=4 l_{1}+2$. Here $T_{2}^{(1)} \rightarrow T_{2}^{(2)}$ consists of o_{1} successive transfers of the first type, followed by $\left[\frac{p_{1}-1}{2}\right]$ successive 2 JTF , followed by one 1 JTF , followed by l_{1} successive BD8TF, followed by $\left[\frac{p_{2}}{2}\right]$ successive 2 JTF , and finally o_{2} successive transfers of the first type.
Case (b): Let $\left[\left(e_{1}+e_{2}\right)-\left(p_{1}+p_{2}\right)\right]=4 l_{2}, l_{2} \geq 1$. Here $T_{2}^{(1)} \rightarrow T_{2}^{(2)}$ consists of o_{1} successive transfers of the first type, followed by one 1 JTF , followed by $\frac{p_{1}-1}{2}$ successive 2 JTF , followed by $\left(l_{2}-1\right)$ successive BD8TF, followed by $\frac{p_{2}-1}{2}$ successive 2 JTF , followed by one 1 JTF , and finally o_{2} successive transfers of the first type.
Case (c): In this case $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{e_{1}-p_{1}}{4}$ successive BD8TFs followed by, $\frac{p_{1}+p_{2}}{2}$ successive 2JTF, followed by $\frac{e_{2}-p_{2}}{4}$, and finally, o_{2} successive transfers of the first type.
Case (d): Here $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{e_{1}+e_{2}}{4}$ successive BD 8 TF , and finally o_{2} successive transfers of the first type.
Case (e)-(i): Let $\left[\left(e_{1}+e_{2}\right)-\left(p_{1}+p_{2}\right)\right]=4 l_{3}, l_{3} \geq 1$. Here $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{p_{1}}{2}$ successive 2JTF, followed by $\frac{l_{3}}{4}$ successive BD8TF, followed by $\frac{p_{2}}{2}$ successive 2 JTF , and finally o_{2} successive transfers of the first type.
Case (f): Let $\left[\left(e_{1}+e_{2}\right)-\left(p_{1}+p_{2}\right)\right]=4 l_{4}+2, l_{4} \geq 1$. Here $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by l_{4} successive BD8TF, followed by one 1 JTF , followed by $\frac{p_{2}}{2}$ successive 2 JTF , and finally o_{2} successive transfers of the first type (respectively, o_{1} successive transfers of the first type, followed by $\frac{p_{1}}{2}$ successive 2JTF, followed by one 1 JTF , followed by l_{4} successive BD8TF, and finally o_{2} successive transfers of the first type).
Case (g): Here $T_{2}^{(1)}$ consists of $\frac{e_{1}}{4}$ BD8TF, followed by $o_{1}-n_{1}$ successive transfers of the first type, followed by $\frac{p_{1}+p_{2}}{4}$ successive 4 JTF , followed by $o_{2}-n_{2}$ successive transfers of the first type, and finally $\frac{e_{2}}{4}$ BD8TF.

Cases (h): In this case $T_{2}^{(1)}$ consists of $o_{1}-\frac{p_{1}}{2}$ successive transfers of the first type, followed by $\frac{p_{1}}{2}$ successive 4 JTF , followed by $\frac{e_{1}+e_{2}}{4}$ successive BD8TF, followed by $\frac{p_{2}}{2}$ successive 4 JTF , and finally o_{2} successive transfers of the first type.
Case (j): Let $\left[\left(e_{1}+e_{2}\right)-\left(p_{1}+p_{2}\right)\right]=4 l_{5}+2, l_{5} \geq 1$. In this case $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by l_{5} successive BD8TF, followed by $\frac{p_{1}}{2}$ successive 2 JTF , followed by one 1 JTF, followed by $\frac{p_{2}-1}{2}$ successive 2JTF, and finally, o_{2} successive transfers of the first type (respectively, o_{1} successive transfers of the first type, followed by one 1 JTF , followed by $\frac{p_{1}-1}{2}$ successive 2 JTF , followed by $\frac{p_{1}}{2}$ successive 2 JTF , followed by l_{5} successive BD8TF, and finally, o_{2} successive transfers of the first type).
Case (k) - (I): In this case $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{e_{1}-p_{1}}{4}$ successive BD8TF, followed by $\frac{p_{1}+p_{2}}{4}$ successive 2JTF, followed by $\frac{e_{2}-p_{2}}{2}$ successive BD8TF, and finally o_{2} successive transfers of the first type.
Case (k) - (II): In this case $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by one 1JTF, followed by $\frac{e_{1}-p_{1}-2}{4}$ successive BD8TF, followed by $\frac{p_{1}+p_{2}-2}{2}$ successive 2JTF, followed by $\frac{e_{2}-p_{2}-2}{4}$ successive BD8TF, and finally o_{2} successive transfers of the first type.
Case (k) - (III): In this case $T_{2}^{(1)}$ consists of o_{1} successive transfers of the first type, followed by $\frac{e_{1}-p_{1}}{4}$ successive BD8TF, followed by $\frac{p_{1}+p_{2}}{4}$ successive 2 JTF , followed by $\frac{e_{2}-p_{2}-2}{2}$ successive BD8TF, followed by one 5TF, and finally $o_{2}-3$ successive transfers of the first type.
Case (k) - (IV): In this case $T_{2}^{(1)}$ consists of $o_{1}-3$ successive transfers of the first type, followed by one 5TF, followed by $\frac{e_{1}-p_{1}-2}{4}$ successive BD8TF, followed by $\frac{p_{1}+p_{2}}{4}$ successive 2JTF, followed by $\frac{e_{2}-p_{2}}{2}$ successive BD 8 TF , and finally o_{2} successive transfers of the first type.
Case (l): In this case $T_{2}^{(1)}$ consists of $o_{1}-\frac{p_{1}}{2}$ successive transfers of the first type, followed by $\frac{p_{1}}{4}$ successive 4JTF, followed by $\frac{e_{1}+e_{2}}{4}$ successive BD8TF, followed by $\frac{p_{2}}{4}$ successive 4JTF, and finally $o_{2}-\frac{p_{2}}{2}$ successive transfers of the first type.

In the similar manner we carry out the transfers $T_{2}^{(i)}$ successively in order by repeating the procedure in which we have accomplished the transfer $T_{2}^{(1)}$ and $T_{23}^{(1)} \rightarrow T_{2}^{(2)}$ respectively, for the Cases - (1) and (2) and complete the transfer $T_{2}: \rightarrow T_{2}^{(1)} \rightarrow T_{2}^{(2)} \rightarrow T_{2}^{(3)} \rightarrow \ldots \rightarrow T_{2}^{(m)}$ so as to get back $D_{6}^{(1)}$ with a graceful labeling due to Theorem 2.1.
5. Now we attach r pendant vertices $c_{1}, c_{2}, \ldots, c_{r}$ to a_{0} and assign them the labels $q-r+1$, $q-r+2, \ldots, q$, respectively, so as to from D_{6} with a graceful labeling from the graceful tree $D_{6}^{(1)}$.

Example 3.2. The diameter six tree in Example 3.1 (Figure 2) is of the type in Theorem 3.1. Here $q=118, m=6, n=4, r=3$. The transfer $T_{1}: a_{1} \rightarrow a_{2} \ldots \rightarrow b_{n} \rightarrow z_{1}$ in Step 3 is the transfer $118 \rightarrow 1 \rightarrow 117 \rightarrow \ldots \rightarrow 111 \rightarrow 5 . T_{2}: z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow z_{s}$ in Step 4 is the transfer $5 \rightarrow 110 \rightarrow 6 \rightarrow \ldots \rightarrow 20 \rightarrow 95$ We first form the graceful tree G as in Figure 4. Figure 5 represents the graceful tree G_{1} obtained after step 3. Figure 6 represents the graceful tree $D_{6}^{(1)}$ obtained after step 4. Figure 7 represents the given diameter six tree D_{6} with a graceful labeling obtained by attaching the pendant vertices c_{1}, c_{2}, and c_{3} assigning them the labels 116,117 , and 118 in step 5.

Case - II: Let $m+n$ be even. Then form a diameter six tree, say G_{6} by removing the vertices $c_{1}, c_{2}, \ldots, c_{r}$, and b_{n} from D_{6}. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Give a graceful labeling to G_{6} by following the

Figure 4. The tree G with a graceful labeling.

Figure 5. The graceful tree obtained after Step 3.
steps 1 to 9 involving giving a graceful labeling to $D_{6}^{(1)}$ in the proof for Case - I by replacing $q-r$ with q_{1}. Observe that in the graceful labeling of G_{6}, the vertex a_{0} gets the label 0 . Now attach the vertices $c_{1}, c_{2}, \ldots, c_{r}$, and b_{n} to a_{0} and assign them the labels $q_{1}+1, q_{1}+2, \ldots, q_{1}+r$, and $q_{1}+r+1$, respectively. Obviously, the tree $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$ with the labelings mentioned above is graceful with a graceful labeling, say g. Then apply inverse transformation $g_{q_{1}+r+1}$ to the above labeling of $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$. Now the vertex b_{n} gets the label 0 . Let $\operatorname{deg}\left(b_{n}\right)=p$. Finally, attach $p-1$ pendant vertices to b_{n} and assign them the labels $q_{1}+r+2, q_{1}+r+3, \ldots$, $q_{1}+r+p$, so as to get the tree D_{6} with a graceful labeling.

The next result follows immediate from Theorem 3.1.

Figure 6. The graceful tree obtained after Step 4.

Construction 3.2. If degrees of a_{i} and b_{j} are even, for $i=1,2,3, \ldots, m ; j=1,2,3, \ldots, n$, and the centers $a_{i}, i=1,2, \ldots, m$, of diameter four trees are attached to combinations as in Theorem 3.1 then D_{6} given by the following are graceful.
(a): $D_{6}=\left\{c ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$.
(b): $D_{6}=\left\{c ; a_{1}, a_{2}, \ldots, a_{m} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ with modd.
(c): $D_{6}=\left\{c ; a_{1}, a_{2}, \ldots, a_{m}\right\}$ with m odd.

Proof. Proofs of part (a) and (b) follow if we set $r=0$ and $n=0$, respectively in the proof involving Theorem 3.1. Proof of part (c) follows if we set $n=0$ and $r=0$ in the proof corresponding to Case - I of Theorem 3.1.

Notation 3.1. Let $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ be diameter six tree. We may have one of or both $n=0$ and $r=0$. For next couple of results we will consistent use the following notations.
$n_{e}=$ Number of stars adjacent to a_{0} with center having odd degree.
$n_{o}=$ Number of stars adjacent to a_{0} with center having even degree, i.e. $n=n_{e}+n_{o}$.
Theorem 3.2. Let $m+n$ be odd, $n_{e} \equiv 0$ mod 4 , degrees of a_{i} are even, for $i=1,2,3, \ldots, m$. If the centers $a_{i}, i=1,2, \ldots, m$, of diameter four trees are attached to combinations as in Theorem 3.1 then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ is graceful.
(b) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ is graceful.

Figure 7. The graceful tree obtained after Step 5.

Proof. Let $\left|E\left(D_{6}\right)\right|=q$ and $\operatorname{deg}\left(a_{0}\right)=m+n=2 k+1$. Proceed as per the following steps. Let us first prove part (a). We repeat Steps 1 and 2 in the proof of Theorem 3.1 for Case -I. Consider the transfer $T_{1}: a_{1} \rightarrow a_{2} \rightarrow a_{3} \rightarrow \ldots \rightarrow a_{m} \rightarrow b_{1} \rightarrow b_{2} \rightarrow \ldots \rightarrow b_{n} \rightarrow z_{1}$ consisting of $m+n_{o}$ successive transfers of the first type, followed by $\frac{n_{e}}{4}$ successive BD8TF from vertex levels in the set A. Observe that the transfer T_{1} and the set A satisfy the hypothesis of Theorem 2.1. Carry out the transfer T_{1} keeping $2 \lambda_{i}+1$ elements of A at the vertices a_{i}, the desired odd number of vertices at $b_{j}, j=1,2, \ldots, n_{o}$, and the desired even number of vertices at $b_{j}, j=n_{o}+1, n_{o}+2, \ldots, n$ of T_{1}. By Theorem 2.1, the new tree, say G_{1}, thus formed is graceful. Let A_{1} be the set of vertex labels of A which have come to the vertex z_{1} after the transfer T_{1}. Finally, we repeat Steps 4 and 5 in the proof involving Theorem 3.1 for Case -I to get the tree D_{6} with a graceful labeling. Proof of part (b) follows if we set $r=0$ in the proof involving part (a).

Theorem 3.3. Let $m+n$ be even, either $n_{e} \equiv 1 \bmod 4$ or $n_{e} \equiv 0 \bmod 4$ and $n_{o} \geq 1$, degrees of a_{i} are even, for $i=1,2,3, \ldots, m$. If the centers $a_{i}, i=1,2, \ldots, m$, of diameter four trees are attached to combinations as in Theorem 3.1 then
(a) $D_{6}=\left\{a_{0} ; a_{1}, a_{2}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n} ; c_{1}, c_{2}, \ldots, c_{r}\right\}$ is graceful.
(b) $D_{6}=\left\{a_{0} ; a_{1}, \ldots, a_{m} ; b_{1}, b_{2}, \ldots, b_{n}\right\}$ is graceful.

Proof. We prove the part (a) first. Let us designate the vertex b_{n} as the center of a star adjacent to a_{0} with odd (respectively, even) degree if $n_{e} \equiv 1 \bmod 4$ (respectively, $n_{e} \equiv 0 \bmod 4$, $n_{o} \geq$ 1). Let us define two integers k_{1} and k_{2} as $k_{1}=\left\{\begin{array}{l}n_{e}-1 \text { if } n_{e} \equiv 1 \bmod 4 \\ n_{e} \quad \text { if } n_{e} \equiv 0 \bmod 4 \text { and } n_{o} \geq 1\end{array}\right.$ and $k_{2}=$ $\left\{\begin{array}{l}n_{o} \quad \text { if } n_{e} \equiv 1 \bmod 4 \\ n_{o}-1 \text { if } n_{e} \equiv 0 \bmod 4 \text { and } n_{o} \geq 1\end{array}\right.$

So we have $n=n_{o}+n_{e}=k_{1}+k_{2}+1$. Form a diameter six tree, say G_{6} by removing the vertices $c_{1}, c_{2}, \ldots, c_{r}$, and b_{n} from D_{6}. Let $\left|E\left(G_{6}\right)\right|=q_{1}$. Give a graceful labeling to G_{6} by following the steps 1 to 4 by setting $q-r=q_{1}$ and replacing n_{e} with k_{1} and n_{o} with k_{2} in the proof for Case -I of Theorem 3.1. Observe that in the graceful labeling of G_{6}, the vertex a_{0} gets the label 0 . Now attach the vertices $c_{1}, c_{2}, \ldots, c_{r}$, and b_{n} to a_{0} and assign them the labels $q_{1}+1, q_{1}+2, \ldots$, $q_{1}+r$, and $q_{1}+r+1$, respectively. Obviously, the tree $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$ with the labelings mentioned above is graceful with a graceful labeling, say g. Then apply inverse transformation $g_{q_{1}+r+1}$ to the above labeling of $G_{6} \cup\left\{c_{1}, c_{2}, \ldots, c_{r}, b_{n}\right\}$. Now the vertex b_{n} gets the label 0 . Let $\operatorname{deg}\left(b_{n}\right)=p$. Finally, attach p pendant vertices to b_{n} and assign them the labels $q_{1}+r+2, q_{1}+r+3$, $\ldots, q_{1}+r+p+1$, so as to get the tree D_{6} with a graceful labeling. The proof of part (b) follows if we set $r=0$.

Example 3.3. Figure 8 (a) is a diameter six of the type in Theorem 3.3. Here $q=192, m=8$, and $n=6, n_{e}=5, a_{1}$ is attached to ($e, o, 0$), each of a_{2} is attached to $(0, o, 0), a_{3}$ is attached to $(o, 0, e), a_{4}$ is attached to $(o, e, 0)$, each of a_{5} and a_{6} is attached to $(o, o, o), a_{7}$ is attached to $(e, 0, o)$, and a_{8} is attached to (e, e, o). We first form the graceful diameter six tree G_{6} as in Figure (d) (without labeling) by removing all the pendant vertices and one star adjacent to c with odd degree. The transfer $T_{1}: a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow b_{n-1} \rightarrow z_{1}$ in Step 3 is the transfer $182 \rightarrow 1 \rightarrow 181 \rightarrow \ldots \rightarrow 176 \rightarrow 7 . T_{2}: z_{1} \rightarrow z_{2} \rightarrow \ldots \rightarrow z_{s}$ in Step 4 is the transfer $7 \rightarrow 175 \rightarrow 8 \rightarrow \ldots \rightarrow 27 \rightarrow 155 \mathrm{We}$ first form the graceful tree G as in Figure (b). Figure (c) represents the graceful tree G_{1} obtained after Step 3. Figure (d) represents the graceful tree G_{6} obtained after Step 4. Figure (e) represents the tree obtained from the graceful tree in (d) by attaching three pendant vertices to c and assigning them the labels 183, 184, and 185. Finally, the graceful tree in Figure (f) is obtained by applying inverse transformation to the graceful tree in Figure (e) (so that the label of the vertex b_{6} becomes 0), and attaching eight vertices to the vertex b_{6} (labelled 0) and assign them the labels $186,187,188,189,190,191,192$, and 193.

(a)

(b)

Figure 8. A diameter six tree of the type in Theorem 3.2 with a graceful labeling.

References

[1] V. Bhat-Nayak and U. Deshmukh, New families of graceful banana trees, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), 201-216.
[2] W.C. Chen, H.I. Lu, and Y.N. Lu, Operations of Interlaced trees and graceful trees, South East Asian Bulletin of Mathematics 4 (1997), 337-348.
[3] M. Edwards and L. Howard, A survey of graceful trees, Atlantic Electronic Journal of Mathematics 1 (2006), 5-30.
[4] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Sixteenth edition, December 20, 2013, url: http://www.combinatorics.org/Surveys/.
[5] P. Hrnciar and A. Haviar, All trees of diameter five are graceful, Discrete Math. 233 (2001), 133-150.
[6] J. Jeba Jesintha, New Classes of Graceful Trees, Ph. D. Thesis, Anna University, Chennai, India, 2005.
[7] J. Jeba Jesintha and G. Sethuraman, All arbitrarily mixed generalized banana trees are graceful, preprint.
[8] M. Murugan and G. Arumugam, Are banana trees graceful?, Math. Ed. (Siwan) 35 (2001), 18-20.
[9] D. Mishra and A.C. Panda, Some new transformations and their applications involving graceful tree labeling, International Journal of Mathematical Sciences and Engineering Applications 7 (1) (2013), 239-254.
[10] D. Mishra and P. Panigrahi, A new class of graceful lobsters obtained from diameter four trees, Utilitas Mathematica 80 (2009), 183-209.
[11] D. Mishra and P. Panigrahi, Some graceful lobsters with all three types of branches incident on the vertices of the central path, Computers and Mathematics with Applications 56 (2008), 1382-394.
[12] E. Robeva, An Extensive Survey of Graceful Trees, Undergraduate Honours Thesis, Standford University, USA, June, 2011.
[13] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod, Paris (1967), 349-355.
[14] G. Sethuraman and J. Teba Jesintha, All extended banana trees are graceful, Proc. Internat. Conf. Math. Comput. Sci. 1 (2009), 4-8.
[15] G. Sethuraman and J. Jeba Jesintha, All banana trees are graceful, Advances Appl. Disc. Math. 4 (2009), 53-64.
[16] V. Vilfred and T. Nicholas, Banana trees and unions of stars are integral sum graphs, Ars Combin. 102 (2011), 79-85

